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1 Einleitung und Fazit

In [1] gelang es Oliver Schniirer et al. unter anderem die Existenz eindimensionaler fischformiger
Netzwerke, die homothetisch schrumpfen und den Gaufskriimmungsfluss erfiillen, zu beweisen. Eine
qulitative Darstellung eines solchen Netzwerks ist in Abbildung 1.1 zu sehen.

Abbildung 1.1: Qualitative Darstellung eines fischférmigen Netzwerks

Das Ziel dieser Arbeit war der Beweis von Theorem 1.1, welches dieses Ergebnis auf n - dimen-
sionale rotationssymmetrische homothetisch schrumpfende Fische, die sich unter dem Gaufskriim-
mungsfluss entwickeln, erweitert. Wahrend die Verallgemeinerung fiir beliebige n in dieser Arbeit
nicht gelungen ist, so zeigen wir doch einen alternativen Beweis fiir n = 1. Ein Grofsteil der hierzu
verwendeten Lemmata ist jedoch auch fiir grofiere n giiltig, sodass die Existenz héherdimensiona-
ler Fische eventuell in zukiinftigen Arbeiten durch die Verallgemeinerung nur weniger Aussagen
gezeigt werden konnte.

Theorem 1.1.
Es gibt rotationssymmetrische homothetisch schrumpfende Fische, die den Gaufkrimmungs-
fluss erfiillen.

Beweis: Fiir n =1 wurde die Behauptung in [1] gezeigt.

Unser Alternativbeweis erstreckt sich {iber die Kapitel 3 und 4.

Ein Beweis fiir n > 1 ist nach wie vor ausstehend, wére jedoch zum Beispiel durch die Verall-
gemeinerung der Aussagen 3.1ff. mdglich. O

Damit sowohl wir als auch der Leser alle zum Beweis dieses Theorems notwendigen Werkzeuge
zur Hand haben, geben wir in Kapitel 2 zuniichst einen Uberblick iiber die verwendeten Definitio-
nen und unsere Notation. In diesem Abschnitt werden auch alle bisher benutzten, jedoch aufgrund
besserer Lesbarkeit noch nicht rigoros erlauterten Begriffe, prézisiert.

In Kapitel 3 stellen wir fest, dass sich der Beweis von Theorem 1.1 auf den Beweis der Exis-
tenz einer Losung einer gewoOhnlichen Differentialgleichung unter geeigneten Randbedingungen
reduziert. Wir werden dort aus unterschiedlich parametrisierten Hyperflichen drei verschiedene
gewohnliche Differentialgleichungen herleiten und noch einmal explizit nachweisen, dass ihre Lo-
sungen geometrisch identisch sind.

Als néchstes werden in Kapitel 4 besagte Gleichungen darauf untersucht, ob es Lésungen zu ihnen
gibt, die die gefordeten Kriterien erfiillen.
Im Laufe von Kapitel 4 konnten einige Aussagen leider nur fiir den 1-dimensionalen Fall gezeigt
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werden. Wahrend numerische Berechnungen die Existenz von rotationssymetrischen Fischen auch
fiir hohere Dimensionen nahe legen, bleibt die Aussage also dennoch ungeklirt. Darin diese Fal-
le, durch Verallgemeinerung einiger Lemmata aus dieser Arbeit oder auch auf génzlich anderem
Wege, noch zu zeigen steckt also durchaus noch Potential fiir weiterfiihrende Arbeiten.

2 Notation und Definitionen

Dieser Abschnitt enthdlt die notwendigen geometrischen und mathematischen Grundbegriffe sowie
die im weiteren Verlauf verwendete Notation und orientiert sich daher sehr stark an [3].

2.1 Notation

Bemerkung 2.1. Es gelte stets m,n € N.

Notation 2.2. Seien Q C R"und I C Roffenund f : @ — R™ und g : Q2 xI — R™ differenzierbar.
Dann schreiben wir

1-fmi:fi=§$- (1<i<n)
Ist n = 1, so schreiben wir auch f’.
82
2. fxizj = fij = ﬁ

3. Df =(f1,..., fn) und Dg = (g1, ...,9n)-

4. g=19%.

Bemerkung 2.3. (Einsteinsche Summenkonvention)

Taucht ein lateinischer Index in einem Ausdruck einmal als oberer und einmal als unterer Index
auf so summieren wir iiber diesen Index vonl bis n. Liegt dieselbe Situation bei einem griechischen
Index vor, wird von 1 bis n + 1 summiert. Fiir z € R?, y € R"*! und A € R"*"*+! gilt also

n n+l
T Aiay® =) Y a' Aiay® = 2T Ay,

i=1 a=1

wobei links die Einsteinsche Summenkonvention angewendet wird.
Die Einheitsmatrix wird hierbei stets durch das Kronecker-Delta ausgedriickt.

2.2 Geometrische Grundbegriffe

Definition 2.4. (Immersion & Einbettung)
Sei 2 C R" offen. Dann heifft X € C1(2,R™)

1. Immersion, falls dX (z) : R" — R™ fiir alle z € Q injektiv ist.

2. Einbettung, falls X eine Immersion und X : Q — X (Q) bezliglich der Spurtopologien ein
Homoéomorphismus ist.

Definition 2.5. (parametrisierte Hyperflichen)
Sei Q C R™ offen und X € C*(Q,R"*!) eine Immersion. Dann heift X eine parametrisierte oder
immersierte (C*)-Hyperfliche.

Wir identifizieren fortan eine Hyperfliche X mit ihrem Bild X (Q) C R*+!.
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Definition 2.6. (Normale)

Sei 2 C R™ offen. Sei X : @ — R™"! eine immersierte Hyperfliche. Dann heifit eine stetige
Funktion v : Q — R"™! mit |v(z)| = 1 und v(z)LX;(x) fiir alle z € Q und 1 < i < n ein Ein-
heitsnormalenfeld an X. v(z) heifst (Einheits-)Normale an X in x.

Definition 2.7. (Metrik)
Sei 2 C R"™ offen und X eine immersierte Hyperflaiche. Dann heift g = (g;;)1<i,j<n mit

gi; = 9ij (@) = (X;, X;j) = X060 X!
Metrik von X. Ihre Inverse bezeichnen wir mit (¢"/)1<; j<n.

Bemerkung 2.8. g ist symmetrisch und positiv definit.

Definition 2.9. (Zweite Fundamentalform)
Sei 2 C R™ offen und X eine immersierte C2-Hyperfliche mit Normale v. Dann heift die symme-
trische quadratische Form A = (h;;)1<i j<n definiert durch

hij = hij(x) == —(X 5, v)
zweite Fundamentalform von X.

Definition 2.10. (Eigenwerte)
Seien (aij)1<ij<n und (b;;)1<i j<n symmetrische quadratische Formen. £ € R™ \ {0} heiflt Eigen-
vektor von (a;;) beziiglich (b;;) zum Eigenwert A, wenn

aij€ = Aoy
fir alle 1 <7 < n gilt.

Definition 2.11. (Hauptkriimmungen)
Die Eigenwerte von A beziiglich g heiffen Hauptkriimmungen und werden hier mit Aq,..., A,
bezeichnet.

Definition 2.12. (Gaufkriimmung)
Das Produkt der Hauptkriimmungen

K=X-..- Ay
heifft Gaultkriimmung.

Definition 2.13. (Gaufskriimmungsfluss)
Eine Familie (X (-,))e0,r), T > 0, von immersierten Hyperflichen X (1) : Q@ — R"™! erfiillt
den Gauftkriimmungsfluss, wenn X auf Q x [0,T) stetig ist und fiir alle (z,t) € Q x (0,7)

X =-Kv

gilt.

2.3 Rotationssymmetrische homothetisch schrumpfende Fische

Definition 2.14. (Homothetisch schrumpfend)

SeiT >ty € Rund (X(-,t))se[4,,7) eine Familie von immersierten Hyperflichen X (-, ¢) : Q@ — R™ 1.
Wir nennen X homothetisch schrumpfend, falls es eine differenzierbare Funktion y : [0,T) — R*
mit p(ty,t2) < 1 fur alle t; >t € [0,T) und

{X(l?,tl) S Q} = ‘LL(tl,tg) . {X(’I,tg) T e Q}

gibt.
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Abbildung 2.1: Qualitative Darstellung eines rotationssymmetrischen Fisches

Definition 2.15. (Rotationssymmetrischer Fisch)

Es seien 1,Q5,Q3 C R™ offen und X7, Xo, X3 rotationssymmetrische immersierte Hyperflachen.
e sei die Rotationsachse und E sei eine beliebige Halbebene, mit 6F = e;.
Wir nennen

3
i=1

einen rotationssymmetrischen Fisch, falls es injektive Kurven «ay, a9, a3 : [0,1] — E mit
folgenden Eigenschaften gibt:

1. Fiir alle 7 € {1, 2,3} gilt «;([0,1]) = X;(%) N E.
2. 01([0,1]) ={A-z: A >1} fireinz € E\ {0}.
3. az(1),a3(1) € span(er) und a5(1)Ley Lag(1).

4. Fiir alle paarweise verschiedenen i, j, k € {1,2,3} gilt
a; (i ([0,1]) Nay ([0,1])) = ;7 (s ([0, 1]) Ny ([0,1]) Ny, ([0, 1)) = {0} .

3
ol0) _
5 L tafon = O

Wir sagen eine Familie von rotationssymmetrischen Fischen (F})iecjo,7y, T > 0, erfiillt den Gauf-
kriimmungsfluss, wenn die zugehdrigen Familien von Hyperflichen (X;(:,t))¢cio,1), (7 = 1,2,3),
den Gaufskrimmungsfluss erfiillen.

Ferner nennen wir F; homothetisch schrumpfend, wenn X;(-,t) fir ¢ = 1,2,3 homothetisch
schrumpfend sind und die Funktion p(¢1,¢2) bei allen dreien auf [0,T") dieselbe ist.

Bemerkung 2.16. Eine anschaulichere Interpretation von Definition 2.15 lautet wie folgt:

1. Ein rotationssymmetrischer Fisch entsteht aus einem Netzwerk aus drei injektiven Kurven
in einer Halbebene des R? durch Rotation um die Kante dieser Halbebene.

2. Eine dieser Kurven ist eine Halbgerade, die den Ursprung nicht schneidet, aber zu einer
Ursprungsgeraden fortgesetzt werden kann.

3. Die anderen beiden Kurven enden auf der Rotationsachse und sind in diesem Punkt ortho-
gonal zur Rotationsachse

4. Der einzige gemeinsame Punkt der Kurven ist ihr Anfang.
5. In diesem Tripelpunkt schneiden sich die Kurven paarweise in einem 120°-Winkel.

In Abbildung 2.1 ist beispielhaft ein Netzwerk von Kurven a1, as, a3 dargestellt, die die Punkte
1. bis 5. erfiillen.
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3 Herleitung und Aquivalenz der Gleichungen

In diesem Kapitel werden wir aus der partiellen Differentialgleichung des Gauftschen Kriimmungs-
flusses unter der Annahme es gibe rotationssymmetrische und homothetisch schrumpfende Lésun-
gen gewOhnliche Differentialgleichungen herleiten. Deren Loésungen, sofern sie existieren, erfiillen
wiederum die besagten Annahmen, wodurch diese nachtréglich gerechtfertigt werden.

Die resultierende gewohnliche Differentialgleichung ist offenbar abhéngig von der Wahl der Pa-
rametrisierung der Losungen des Gaukkriimmungsflusses. Da manche der Aussagen, die wir in
nachfolgenden Kapiteln zu beweisen suchen in verschiedenen Parametrisierungen unterschiedlich
schwer zu zeigen sind, werden wir hier die gewthnlichen Differentialgleichungen fiir drei verschie-
dene Parametrisierungen herleiten.

Anschliefsend weisen wir nach, dass die drei resultierenden Gleichungen dieselbe Geometrie beschrei-
ben und sich viele der Ergebnisse von einer der Gleichungen auf die jeweils anderen beiden iiber-
tragen lassen.

3.1 Herleitungen der gewohnlichen Differentialgleichungen

Bemerkung 3.1. (Graphische Parametrisierung entlang der Rotationsachse)

1.Sei T > tg > 0und X : R® x [0,7) — R""! eine rotationssymmetrische homothetisch
schrumpfende Losung der Differentialgleichung des Gaukriimmungsflusses. Ohne Einschrén-
kung gehe die Rotationsachse e* durch den Ursprung. Die Koordinate entlang dieser Achse
sei z € R.
Ferner seien V : R x R und Y : R"~! — S"~! eine lokale Parametrisierung der (n — 1)-
dimensionalen Einheitssphére, derart, dass

X(2,9,1) = (V(2, )Y (9), 2)

eine mogliche Parametrisierung von X ist. Da X rotationssymmetrisch um die e?*-Achse ist,
existieren geeignete V und Y. Eine Veranschaulichung dieser Parametrisierung findet sich in
Abbildung 3.1.

\J

Abbildung 3.1: Veranschaulichung der graphischen Parametrisierung entlang der Rotationsachse

2. In der obigen Parametrisierung erhalten wir folgende Resultate fiir die ersten und zweiten
Ableitungen von X: (i,j € {¥1,...,%-1})

X.(z,9,t) =(V'(2,t)Y (9),1)
Xi(z,0,t) =(V(z,0)Y:(19),0)
Xij(2,9,t) =(V(2,t)Yi;(9), 0)
Xiz(2,9,t) =(V'(2,1)Yi(9),0)
X..(2,9,t) =(V"(z,t)Y (), 0)
X(2,9,t) =(V(z,0)Y(9),0)
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Hieraus ldsst sich unmittelbar die Metrik g ablesen:

V2 iJ i, <n— 0
9= (X1, Xi))1<k,i<n = ( (03)15 JEnt 1 +Vlz) ;

wobei (04;) = ((V;,Y;)) die Metrik der (n — 1)-dimensionalen Einheitssphére ist.

. Durch scharfes Hinsehen findet man die Normale
1
v=———(Y,-V).

V1+ V72 ( )
Nutzt man die Tatsache aus, dass 1auf der Einheitssphére die erste und zweite Fundamental-
form identisch sind und Y = 5" | dass also

oij = —(Yi;,Y)
gilt, siecht man leicht, dass auch

Y;'j = —O’in + TiIE-Y]@

gilt, wobei der zweite Term im Tangentialraum der Sphére liegt und somit orthogonal auf
der Normalen steht.
Durch Einsetzen ergibt sich nun direkt die zweite Fundamentalform:

Tt (0ihi<igen—1 0
A= —((Xkt, V) 1<k i<n = 0 o ).
e

. Da ¢ als Metrik inbesondere invertierbar ist, konnen wir die Hauptkrimmungen, als Eigen-
werte der zweiten Fundamentalform beziiglich der Metrik, ablesen und erhalten

_V// 1
)\Z = — A =,
VIFv? e
wobei Ay mit Vielfachheit n — 1 auftritt.

Als Produkt dieser Hauptkriimmungen erhélt man

"

V —n—2
K=-——"/14 V7

Vv

Da X nach Annahme den Gaufikriimmungsfluss erfiillt, ergibt sich
(X )y =—K

14 v —n—2
& e :+V”*1\/1+V/2 . (1)

. Aufgrund der Annahme, dass es sich bei X neben einer rotationssymmetrischen Lésung auch
um eine homothetisch schrumpfende Losung handeln soll, fordern wir

) {(V(Z,t0)Y (9),2) : 2e R} ={(V(z, )Y (¥),2) : z € R}
fir pu(t) # 0 und ein festes ¥ und schreiben v(2) = V(Z,ty). Es folgt u(t)Z = z und
u(t)v(2) = V(z,t). Woraus sich V(z,t) = u(t)v (,jt)) ergibt.
Fiir die Ableitungen von V folgt daher
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6. Einsetzen dieser Ableitungen in Gleichung (1) liefert

a(t) (v(x) =o' (z) - x) :/m 1T U,(x)2—(n+1)
"ip (L 5—(n+1)
< A(t)u(t) _1;}(.(%)2”_11(:(.1‘)(—)1]/(.1‘)1‘) ) (2)

wobei die Substitution x = ﬁ vorgenommen wurde.

Wir haben implizit angenommen, dass v(z) — v'(z)z # 0 ist. Wir werden spéter nur v
betrachten, die dieser Annahme geniigen oder Ursprungsgeraden sind. Rotiert man eine
Ursprungsgerade um die Rotationsachse, so erhdlt man einen Kegel, eine Ebene oder die
Rotationsachse selbst. Bei allen dreien handelt es sich um einfache Losungen des Gaufikriim-
mungsflusses.

Da in Gleichung (2) die linke Seite nur von ¢ abhéngt, wihrend die rechte Seite allein von
x abhéngt, folgt, dass beide Seiten gleich einer Konstanten ¢ sein miissen. Fiir ¢ = 0 folgt
1= 0. Fiir ¢ # 0 ist die allgemeine Losung

p(t) =+ "3/ (n+ De(t —to) — p(to) D),

solange der Term unter der Wurzel nicht negativ ist.

Aufgrund der Rotationssymmetrie kbnnen wir uns auf die positive Losung beschranken und
stellen fest, dass ¢ < 0 gelten muss, damit X homothetisch schrumpft. Ferner bemerken
wir, dass eine andere Wahl von |c| lediglich einer Zeitreskalierung entspricht, weshalb wir
ohne Einschrinkung ¢ = —1 wihlen. Es kann auch nachgerechnet werden, dass im Raum
reskalierte Versionen von v(x) Gleichung (2) bei anderer Wahl von c¢ erfiillen. Bei Homothe-
tisch schrumpfenden Losungen ist dies nicht iiberraschend, da Translation in der Zeit und
Raumreskalierungen bei homothetisch schrumpfenden Loésungen dquivalent sind.

7. Gleichsetzen der rechten Seite von Gleichung (2) mit ¢ = —1 und Auflésen nach v”(x) liefert

V(@) = I+ o (@2 @) (v (@) -3 - o), (%)

und damit eine gewthnliche Differentialgleichung aus deren Lésungen rotationssymmetrische
homothetisch schrumpfende Losungen der Gleichung des Gaufkriimmungsflusses konstruiert
werden kdnnen.

Die Gleichung (*) ist zum Beweis einiger wichtiger Aussagen in Bezug auf Theorem 1.1 gut
geeignet, weist aber beispielsweise den Nachteil auf, dass ihre Losungen in manchen Punkten un-
endlich hohe Ableitungen haben miissten, um aus ihnen einen Fisch zu konstruieren. Daher wollen
wir aus einer anderen Parametrisierung von X nun eine weitere gewohnliche Differentialgleichung
herleiten, die dieses Manko nicht aufweist.

Bemerkung 3.2. (Winkelparametrisierung)

1. X sei wie zuvor eine rotationssymmetrische homothetisch schrumpfende Hyperfliche, die
den Gaufkriimmungsfluss erfiillt. E sei eine beliebige Ebene in der die Rotationsachse liegt.
In dieser Ebene verwenden wir Polarkoordinaten, wobei ¢ der Winkel zur Rotationsachse
sei. Aufgrund der Rotationssymmetrie ldsst sich nun X als

X(e.0.0) = Ule.t) (M)

schreiben, wobei Y wo im letzten Abschnitt eine lokale Parametrisierung der Sphére ist und
U : [0.r] - RT eine geeignete von p-abhiingige Funktion ist, die den Abstand von X zum
Ursprung codiert. Als Anschauung dieser Wahl der Parametrisierung dient Abbildung 3.2.
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Abbildung 3.2: Veranschaulichung der Winkelparametrisierung

2. In dieser Parametrisierung erhalten wir die nachfolgenden ersten und zweiten Ableitungen
von X: (Z,] S ’191, ...,19»,1,1)

Xoli0,0) U (o,t) (U ) 4 vty (T

cos(¢p) —sin(p)
X)) (PO
Xij(p,0,t) = (sm <P)0Yu )
Xip(p,0,t) = Cmﬁﬁ )+w%wcmﬁnw)7
= to (M) o (G1L)

st (1),

Anhand der ersten Ableitungen l&sst sich leicht die Metrik g ablesen:

B _ (U?sin® () (o) 1<ij<n1 0
g = ({(X1, Xi))1<k,i<n = ( 0 Uvz+u?)-

o ist hier wie zuvor die Metrik auf der Einheitssphére.

3. Ebenso leicht {iberzeugt man sich davon, dass

_ 1 (U (sin(ga)Y) U (cos(cp)Y))
V07 \U \ cos(e) —sin(p)
die duflere Normale ist. Mit denselben Argumenten wie in Bemerkung 3.1 in Abschnitt 3
erhélt man den nachfolgenden Ausdruck fiir die zweite Fundamentalform:

_ 1 (U2 sin?(p) — UU'sin(p) cos(9)) (0ij)1<i j<n—1 0
NcEig 0 U?+20”-U0U0"
4. Die Hauptkriimmungen sind somit
_U*420” -UU” Ny = 1 ( _cos(gp)U’)
¢ NEEaes MRV e sin(p) U )

Die Vielfachheit von Ay ist erneut n — 1, sodass die Gauftkrimmung die Gestalt

w(1— cos(p) U’ U2+ 20 - UU")
= sin((p) U \/Wn+2
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hat.
Die Gleichung des Gaufskriimmungsflusses reduziert sich beim Einsetzen der bisherigen Re-
sultate zu
<X7 V> =—K
& L —_(1- cos(p) U’ U420 - UU”) 5
VOZ+U?2 sin(p) U \/Wn+2

5. Die Forderung, dass X homothetisch schrumpfend ist, lautet in der momentanen Parame-
trisierung

u(t) {U(@,t0)(sin(2)Y (9), cos()) : ¢ € [0, 7]} = {U(p, ) (sin(p)Y (9), cos()) : ¢ € [0, 7]}

Wir definieren u(p) := U(@, tg) und schlussfolgern aus der Mengengleichheit, dass ¢ = ¢
und U(p,t) = p(t)u(p) gelten.
Damit sind die Ableitungen von U:

6. Setzt man diese Ableitungen in Gleichung (3) ein ergibt sich

u(p)? _ -1 (1 cos(¢) U(w)) " (u(p)? + 20 () — u(p)u" (¢))
u(p)? + /()2 )" sin(0) u(y) MO L
: n cos(p) w' () " (u(e)? + 20/ ()* — u(p)u” ()
& ity = (1- : e
u()?v/u(p)® + ()
Auch hier sind die rechte und linke Seite von jeweils verschiedenen Variablen abhingig,
woraus folgt, dass beide Seiten konstant sein miissen. Die Losung von a(t)u(t)™ = ¢ ist aus

dem vorigen Abschnitt bekannt. Ferner folgern wir analog, dass ohne Einschréankung ¢ = —1
gewahlt werden kann.

fi(t)

¥

7. Durch Gleichsetzen der rechten Seite von Gleichung (4) und Auflésen nach u”(¢) bekommen
wir folgende gewohnliche Differentialgleichung fiir u:

20/ (p)?  ulp)\/ulp)? + (@)

u(p) (1_ cos(p) u «:)) "

sin(e) ulp)

Gleichung (x«) ist in ihrer Gestalt komplizierter als (). Dafiir lassen sich in dieser Parametri-
sierung die Kriterien, die wir von einem Fisch fordern besonders leicht ausdriicken. Die Bedingung,
dass Fische senkrecht von der Rotationsachse durchstofsen werden reduziert sich beispielsweise zu
u'(0) = 0 und ' (7) = 0.

Des Weiteren lisst sich in dieser Darstellung der Schnittwinkel 9(¢) von X mit einer Ursprungs-
geraden, die die Rotationsachse im Winkel ¢ schneidet, besonders leicht ausdriicken, da

(X, () ) = Xt

cos(p)

u/

& cos(d(p)) = NoEer] (5)
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Abbildung 3.3: Veranschaulichung der graphischen Parametrisierung senkrecht zur Rotationsachse

gilt.
Aufgrund der Singularitét von % in (%) bei ¢ = 0 und ¢ = 7 erweisen sich jedoch
Aussagen zur Existenz von Losungen an diesen Stellen als schwierig, weshalb wir hierzu noch eine

dritte gewohnliche Differentialgleichung herleiten wollen.

Bemerkung 3.3. (Graphische Parametrisierung senkrecht zur Rotationsachse)
Die gewdhnliche Differentialgleichung, die in diesem Abschnitt hergleitet wird, wurde bereits zuvor
in [4] hergeleitet.

1. Die Herleitung in diesem Abschnitt verlduft exakt parallel zu der in 3.1. Wir wollen das
Koordinatensystem bei der Parametrisierung jedoch um 90° drehen, suchen also senkrecht
zur Rotationsachse r graphische homothetisch schrumpfende Lésungen der Gleichung des
Gaufkriimmungsflusses.

Sei dazu X wie in den Abschnitten zuvor eine rotationssymmetrische homothetisch schrump-
fende Losung des Gaufkriimmungsflusses, Y erneut eine lokale Parametrisierung der (n—1)-
dimensionalen Einheitssphire und W : RY x [to, T] — R so, dass

X(r,0,t) = (W(r, 1), rY (9))
gilt. Eine Veranschaulichung dieser Parametrisierung findet sich in Abbildung 3.3.

2. Nun nehmen die ersten und zweiten Ableitungen nach r bzw. i,j € {¥1,...,92} folgende
Gestalt an:

Die Metrik g ist somit
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3. Man tiberpriift leicht, dass

1
V= W(l, —W/Y)

die obere Normale ist und erhélt damit analog zu Absatz 3 in Bemerkung 3.1, dass die zweite
Fundamentalform folgendermafien aussieht:

1 W oij)i<ij<n-1 O
VI+W?2 0 w”

4. Aus g und A lassen sich nun die Hauptkriimmungen ablesen:

—_WwW" 1 1w
N LW

Vit w2’ L+we= r
Da Ay mit (n — 1)-facher Vielfachheit vorkommt ist die Gaufkriimmung

—w W\
K = :
\/1+W’2”+2< r >

Damit wird (X, v) = —K zu

W W W\
= . 6
/1 + W2 /71 T W/2n+2 ( r ) ( )

5. Die Forderung an X, homothetisch schrumpfend zu sein, formulieren wir erneut als Mengen-
gleichheit

w(@) {(W(7,t0), 7Y (9)) : 7 € R{ } = {(W(r,1),rY(9)) : r € R} }

u(t)
Mit dieser Definition von w nehmen die Ableitungen von W folgende Form an:

W (r,t) :w//lg(zgt))

e =it (v (55) = (5t ) )

6. Wir setzen diese in Gleichung (6) ein und erhalten nach der Substitution p =

und folgern, dass r = p(t)7 und W(r,t) = p(t)W (7, tg) =: u(t)w (L>

#Zt)

1(t) (w(p) — pw'’ w’ —w’ nel
u(t) (w(p) — pw'(p)) (p) W( (p)>

O N T DEANTO

o (52)
VI w(pE T wlp) —pw'(p)

Aus der notwendigen Konstanz beider Seiten erhalten wir dieselbe Losung fiir p wie bereits
in den beiden vorangegangenen Bemerkungen und argumentieren analog, dass somit auch
die rechte Seite von Gleichung (7) gleich —1 sein muss. Den Fall w(y) —pw' () = 0 haben wir
hier wieder implizit ausgeschlossen, da dieser Fall im Folgenden nur bei Ursprungsgeraden
auftreten wird, deren Rotationskérper den Gauflkriimmungsfluss bereits trivial erfiillen.

& p(t)pu(t)" =

(7)
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7. Setzt man dies ein und 1ost nach w” auf erhalten wir wieder eine gewohnliche Differential-
gleichung;:

w’(r) =+/1+ w’(r)QnH <w’(:)) ) (rw'(r) —w(r)). (% * *)

Mit der Gleichung (x x %) hat sich Sebastian Kiimpel in [4] auseinandergesetzt und unter an-
derem die Existenz und Regularitdt von Losungen nahe r = 0 bewiesen.

3.2 Aquivalenz der Gleichungen (x),(xx) und (x % %)

In diesem Abschnitt werden wir zeigen, dass Losungen von (x),(xx) und (% * x) tiberall dort wo sie
existieren geometrisch dquivalent sind, also beispielsweise in den Hauptkriimmungen iibereinstim-
men.

Lemma 3.4. SeiT >0 und X : Qx[0,T) eine Lisung von (X,v)=—K. 8ei ¥ : Qx[0,T) = Q
eine C*'-Funktion so, dass W(-,t) : Q — Q fiir alle t € [0,T) ein C?-Diffeomorphismus ist. Dann
gilt fir X(x,t) := X((¥(x,t),t)) .

(X,0) = —K.
Mit v, IA(MC},A, ... sind hier die zu X gehorigen geometrischen Grofien gemeint.
Es gilt ferner v(x,t) = v(¥(x,t),t) und \;j(x,t) = N (¥ (z,1),t) firi=1,...,n, was natirlich auch

)

dieselbe Gleichheit fir K und K impliziert.

Beweis: Es gilt

X 0 .
X =—X + X, U*
g Tk
X; =X, 0k

X =XpU + X Ui,
Da v {iberall normiert ist gilt dasselbe offenbar fiir ©. Ferner ist
(D, t), Xi(x, 1)) = W(U(x,t),t), Xp(W(z, ), 6))UF(z,t) = 0.
Fiir die Metriken gilt
Gij = X?éaﬁf(f = ‘I’fXI%aﬁXzﬂ‘I’é = W?ka‘l’§~

Die zweite Fundamentalform transformiert sich analog:

hij = — X%0050" = — X0k dapr” — X5, 05050507
= — U XP0apv” — UF (XG0apr”) Ul =0+ Whhy UL

Da U ein Diffeomorphismus ist, ist(\llé-)lgi,jgn eine invertierbare Matrix. Aus dem Transforma-
tionsverhalten der Metrik und der zweiten Fundamentalform folgt hiermit, dass die Eigenwerte
der zweiten Fundamentalform beziiglich der Metrik {ibereinstimmen. Damit sind die Behaupteten
Eigenschaften von v, A1, ..., A\, und K gezeigt.

Zuletzt gilt noch

; 0 .. ~
(X,0) = axaaaﬁyﬂ +UiX¥up1’ = ~K +0=—K.
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Die aus Losungen von (x),(*) und (* * x) konstruierten Hyperflichen unterscheiden sich ledig-
lich in ihrer Parametrisierung, sodass es uns Lemma 3.4 erlauben wird einige der Aussagen von
den Gleichungen aufeinander zu iibertragen.

Lemma 3.5. Sei h > 0. FEuistiert eine Losung v von (%)  mit —hv'(—=h) — v(—=h) < 0 auf
—h <2 < Tymay und gilt dort v > 0, so ist v auf dem gesamten Existenzintervall strikt konkav.

Beweis: Wegen der Differentialgleichung gilt v”(—h) < 0. Angenommen, es existiert ein zg € (—h, Znaz)
mit v”(xg) = 0. Dann folgt, da v > 0, dass v'(x¢)zo —v(z¢) = 0. In xy stimmen also die Ableitung
von v und die der Ursprungsgeraden g durch (xg,v(xg)) iiberein. g ist jedoch selbst eine Losung
von (%) , sodass aus der eindeutigen Losbarkeit gewohnlicher Differentialgleichungen g = v folgt.
Damit folgt —v'(—h)h — v(—h) = 0. Ein Widerspruch. O

Lemma 3.6. Sei I := (a,b) C Ry und w eine Losung von (xx*) auf I mit w'(a)a —w(a) < 0.
Dann gilt w'(x)x —w(z) < 0 fir alle x € T und w ist streng konkav.

Beweis: Mit Hilfe der Differentialgleichung (x x %) folgt der zweite Teil der Behauptung direkt
aus dem ersten. Dieser erste Teil folgt genauso wie die Aussage des vorangegangenen Lemma aus

der Eindeutigkeit von Losungen gewohnlicher Differentialgleichungen. U
Lemma 3.7. 1. Sei v eine Lisung von (x) auf einem Existensintervall I C R mit v'(z) # 0
fiir alle x € I, dann ist w = —v~! (x* ).

2. Sei w eine Lisung von (xx*) auf einem Existensintervall I C RY mit w'(x) < 0 fiir alle
x €I, dann ist v := (—w)~! eine Ldsung von (x).
Mit (-)~1 ist hier stets die Umkehrfunktion gemeint.

Beweis: Ursprungsgeraden l6sen sowohl () als auch (x x%). Sei daher v keine Ursprungsgerade.
Nach Lemma 3.5 ist daher daher v # 0 in I . Da v graphisch ist, folgt w’ < 0. Nach dem Satz
von der Umkehrabbildung gilt:

Da w' < 0 ist, ist die letzte Zeile gerade (% * *).
Die andere Richtung funktioniert unter Anwendung von Lemma 3.6 durch Umkehrung der obigen
Rechenschritte. O

Lemma 3.8. Sei v(z(p)) := u(p)sin(p) und z(¢) = u(p) cos(p) so, dass v'x —v # 0 < v’ # +oo

und v’ £ +oo & (1 — Z?S((ig %) = 0. Dann gilt

v l0st (x) < u lost (5x).

Beweis: Wir rechnen die Behauptung nach. Zunéchst gelten
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Ty, =gy, cos(p) — usin(yp),
vy =Uy sin(p) + ucos(¢) = v,
Tpp =Upp cOs(p) — 2uy, sin(p) — ucos(go)

Vg =Ugy Sin(@) + 2u, cos(p) — usin(p).
Es folgen

U, sin(@) +ucos(¢)  u,sin(p) 4 ucos(p)

Ty Uy, cos(p) — usin(yp)

Vg =

und

Vaa s =V — VaTiyp
= (upyp sin(p) + 2uy, cos(p) — usin(p))
Uy sin(p) + u cos(y)

U, cos(p) — usin(yp)

(U cos(p) — 2uy, sin(p) — ucos(p))
;@ [(ugy sin(p) + 2uq, cos(p) — usin(p))(u, cos(p) — usin(p))
(g 5in(p) + 1 c03(¢)) (15 c03(s7) — 20 5n(0) — wcos())]

1
:E [_“swu +u? + 2”?&] :

Damit erhalten wir also

3 _ 2 2
VgaTy, = —Uppl + U +2u<p.

)

Als nichstes rechnen wir den Term /1 + v2v in eine praktischere Form um:

2

u? sin(p)? + 2uuy, cos(p) sin(p) + u? cos(yp)

V2 (1 4+ v"?) =u?sin(p)? + u? sin(p)* —2

)?
u? cos(ip)? — 2uuy, cos(p) sin(p) + u?sin(p)?

_u2 sin(p)? (u2 cos(¢)? + u? sin(p)? + uZ sin(p)? 4 u® cos(p)?)

u? cos(p)? — 2uuy, cos(p) sin(yp) + u? sin(p)?

2
u? sin(p)? (u® + u2) Y u? +uf

_U2 sm(<p) (1 _ cos(p) ue ) - 1 cos(p) Uy

sin(p) u sin(¢) u

Wir zeigen noch

xi(l + v2) =(uy, cos(p) — usin(yp))? + (uy sin(p) + ucos(g))?

_.2 2
=Uu —&—u@

und

(Vg — v)x, =(uy sin(p) + wcos(p))u cos(p) — (uy cos(p) — usin(p))usin(p)

:uz.
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Setzen wir alles in (x) ein ergibt sich die Behauptung:

n+1
(%) & Vg =/ 1+ 02 0" H(vpx —v)
n—1
& —Up,pu + u +2ui :(\/1—1—1)320@) xi(l—l—vi)(uwx—v)xw
—_———

—u2 2 =u?
=us+u u
A /u2+u2¢ ®

= cos(@) up
sin(p) u

n+1
/02 2
2%20 Uy /U —|—u¢

& Upp =U + ——
P U (1 . cgs((g;)) &)n_l
sin(p) w

& (kk).

4 Existenz homothetisch schrumpfender rot.sym. Fische

Lemma 4.1. Seih > 0 Es gibt ein e > 0 und eine Lésung w von (x *x), die auf [0,¢) existiert und
w(0) = h, w'(0) =0 und w'(z) < 0 fir alle x € (0,¢) erfillt. Ferner sind die Hauptkrimmungen
von der aus w konstruierbaren Hyperfliche X strikt positiv.

Beweis: Diese Aussage wird von Sebastian Kiimpel in [4] gezeigt. O

Nach Lemma 3.4 sind somit auch die Hauptkriimmungen von den zu entsprechenden Lésungen
von (%) und (#*) gehorigen Flichen im Punkt (e, w(e)) streng positiv. Da w'(e) < 0 gilt fiir eine
korrespondierende Losung v von (x) v'(w(e)) # co. Damit sind die Losungen in diesem Punkt fiir
(x) und (%*) wohldefiniert und beide in einer Umgebung stetig. Nach Picard-Lindeldf existieren
also Losungen v und u von (x) und (%) in einer Umgebung von besagtem Punkt. Wir setzen diese
durch w bis zur Rotationsachse fort.

Lemma 4.2. Es sei h > 0 und v eine Losung von (%%) mit v(—h) > 0, v'(—=h) < oo und
—hv'(=h) —v(=h) < 0. Dann existiert v auf [—h, &) fir ein € >0 und es gilt dort v > 0.

Beweis: Sei I := [—h,Tmaz) das maximale Intervall auf dem v existiert und positiv ist. Dann
folgt aus Lemma 3.5, dass v dort streng konkav ist und daher sowohl v’(z) < v'(—h) < oo und
v(z) < v(—=h) + v (=h)(h+ z) < oo fiir alle z € I gelten. Falls v" > 0 gilt, sind wir fertig. Daher
gelte nun ohne Einschrankung v'(—h) < 0 und damit auch v" < 0. Ferner gilt, dass die Ungleichung
v'(x)z —v(x) < 0 auf ganz I ihre Giiltigkeit behilt, da es sonst ein x € I gibe, in dem Gleichheit
gilt. Aufgrund der Eindeutigkeit von Losungen gewohnlicher Differentialgleichungen, wire v daher
eine Ursprungsgerade. Ein Widerspruch.

Aus der Ungleichung folgt nun aber v'(z) > —oo fiir alle z < 0 .

Sei f(x) := v(—=h) — ”(%')(h + ). Dann gilt f(—h) = v(—h) und wegen v'(x)z — v(z) < 0in I
auferdem f'(—h) < v’(—h). Also inbesondere f # v auf einer Umgebung von —h.

Angenommen es gibt ein zg € (—h,0) NI mit v(xg) = f(x¢). Ohne Einschrankung sei dieses xg
minimal mit dieser Eigenschaft. Dann muss v'(x¢) < f/(x0) gelten. Wir erhalten also

v'(w0)x0 — v(x0) > f'(w0)20 — f(20) = 0.

Daher gibt es ein 1 € (—h,zg) mit v'(z1)z1 — v(z1) = 0. Erneut ein Widerspruch.

Es gilt also @4, > 0. Falls v(0) = 0 ist, so folgt aus (x) und der Eindeutigkeit von Losungen, dass
v eine Ursprungsgerade ist. Falls [v/(0)| = oo gilt, so betrachten wir die korrespondierende Losung
w von * % x, fiir die dann w’(v(0)) = 0 gilt. Ein Blick in (x x x) zeigt, dass auch hier mit Hilfe der
Eindeutigkeit von Losungen folgt, dass w eine Ursprungsgerade ist. Beides steht im Widerspruch

zu den Voraussetzungen. O

Bemerkung 4.3. Zusammen mit Lemma 4.1 und 3.4 folgt hieraus auch die Existenz von Losungen
von (x*) auf [0, % + ¢) fiir ein € > 0.
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Lemma 4.4. Seih > 1 und w eine Lisung von (xxx) mit w(0) = h und w'(0) = 0. Dann ist w in
einer Umgebung der Rotationsachse im Inneren der Einheitssphdare, die lokal als g(r) = v/1 — r2+h—1
dargestellt werden kann.

Beweis: Nach Lemma 4.1 existiert der Grenzwert A := lir% wT—(TT) und ist positiv. Mit dem Satz
r—

von "Hospital folgt durch Einsetzen in (x  x)

1
T - _
A=l —t) = )
& —w’(0)=r¢ L > 1.
w(0)

Da ¢g(0) = h = w(0) und ¢'(0) = ﬁg) = 0 = w'(0) gelten, aber ¢”(0) = ﬁﬁ) = —1 ist, gilt
9"(0) > w”(0). Aufgrund der Stetigkeit gilt dies weiterhin auf einer Umgebung U der 0. Zwei-
maliges Anwenden des Vergleichsprinzips fiir gewohnliche Differentialgleichungen liefert daher fiir

w(r) < g(r) fir alle r € U O

Lemma 4.5. Sei h > 1 und u eine Lisung von (x%) mit u(0) = h und u'(0) = 0. Ferner sei ¢q
minimal mit u(pe) = 1. Dann ist u'(x) < 0 fir alle ¢ € (0, o).

Beweis: Nach Lemma 4.4 gilt «”(0) < 0 und damit u’ < 0 auf (0,¢) fiir ein hinreichend kleines
e>0.
Angenommen es gibt nun ein ¢ mit u'(pg) = 0. Dann muss u” () > 0 gelten. Mit (xx) gilt
weiter

u(po) — u(po)"** >0,

woraus u(po) < 1 folgt. Gélte zusétzlich u”(pg) = 0, so wire auch u(pg) = 1. In diesem Fall
wiirde u in g sowohl in der nullten als auch in der ersten Ableitung mit der Einheitssphire um
die Null iibereinstimmen. Da diese Sphére, wie man leicht priift, ebenfalls eine Losung von (xx) ist,
wire u aufgrund der Eindeutigkeit von Losungen mit dieser Sphére identisch. Dies widersprache
u(0) = h > 1. Damit sind beide vorangegangenen Ungleichungen strikt und die Behauptung
gezeigt. O

Bemerkung 4.6. In den nachfolgenden Lemmata wird sich die folgenden Aussage einige Male
finden:

Sei v eine Losung von (x) mit v(—h) =0 und v'(—h) = co.

Diese etwas laxe Formulierung ist wie folgt zu verstehen:
v 1ost (x) auf (—h, Tymaz), Wobel T,,q, von der jeweiligen Situation abhédngen wird, und es gibt eine

Losung w von (x x %) mit w(0) = h und w’(0), sodass graph(v) und Rgge (graph(w)) in einer Um-

gebung des Punktes (—h, 0) identisch sind. Rggo bewirke hier eine Rotation im Gegenuhrzeigersinn
um 90° um den Koordinatenursprung.

Lemma 4.7. Sei h > 1 und sei v eine Losung von (x) mit v(—h) =0 und v'(—h) = co. Ferner
se€l Uynaz = 1{138( v(t) der Héchstwert, den v annimmt bevor x = 0. Dann gilt hler;O VUmaz = 0.

Beweis: Es sei V(x,t) die Losung von Gleichung (1) mit V(z,t9) = v(z). X(x,9,t) sei die aus V
konstruierte homothetisch schrumpfende rotationssymmetrische Losung des Gaufkrimmungsflus-
ses und Vol(X), das durch X zwischen = —h(t) und x = 0 eingeschlossene Volumen. —h(t) <0
ist hier der linke Schnittpunkt von X mit der Rotationsachse. Nach Lemma 4.2 ist dies der einzige
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Schnittpunkt kleiner Null.

Es gilt
0
|[Vol| = / dr = wy, / V(z,t)"dx.
Vol —h(t)
Fiir die Zeitentwicklung von |V ol| ergibt sich daher
0
%VOZ(X) =wn | V(0,6)"0 4 V(=h(t),t)"h(t) + / nVVnlde

—h(t)
Da —h(t) der Schnittpunkt mit der Rotationsachse ist und 0 = 0, sind die ersten beiden Terme

Null. Fiir ¢ € R sei y.(t) < 0 maximal mit V'(y.(¢),t) = ¢ und y.(t) = 0, falls kein z < 0 die
Bedingung erfiillt. Aufgrund der Konkavitdt von v sind diese Punkte wohldefiniert.

Wir rechnen mit dem dritten Term weiter und erhalten nach Einsetzen von Gleichung (1)

y—1(t) y—1(¢) 0
V// V// V//
U =w,n ——dxr + / —dr + / —dx
Vigvert Vigvert Vit
—h(t) y1(t) y—1(t)
Da X homothetisch schrumpfend ist, gilt %VOZ(X ) < 0. Ferner gilt \/H-LV//;"H > ‘VY‘,/:H und
v "
v 2V
Es folgt

y1 () y—1(t) 0
d

V// V//
1"
—h(t) y1(t) —1(t)

N |:Vl—n:| y1(t) |:V/—n:| 0
> —wpn
n Y-1

(L A
> —wp — 2nw, — wy, > —2wy(n+ 1).
Wirft man einen Blick auf die Zeitentwicklung von X, die mafigeblich durch das in der Herleitung
von (x) definierte p bestimmt wird, stellt man fest, dass es einen Zeitpunkt ¢, < oo gibt bei
dem v(tyn) = 0 gilt.
Da v beschrénkt ist, ist auch tg — ¢, < 0o und es folgt

—wpn ’[V’]y_1 —wpn

Y1

Vol(X) < Vol(X) < 2wp(n+1) (tg — tpin) < 0.

t=to

Sei —Zpmar < 0 der eindeutige Punkt, in dem v seinen Maximalwert v,,q, links von x = 0
annimmt. Z; sei der (n + 1)-dimensionale Kegel der Linge h — 4. und Radius vmaq. Zo sei
der (n + 1)-dimensionale Kegel der Linge %4, und Radius v;,4,. Aufgrund der Konkavitét

. Eine Veranschaulichung, wie diese beiden Zylinder
t=t
in Vol(X) platziert sind, ist in Abbildung0 4.1 zu sehen. Das Gesamtvolumen beider Zylinder

von v passen beide Zylinder in Vol(x)
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Umaz

7 22

Y

—h —Tmar 0

Abbildung 4.1: Qualitative Darstellung der Einbettung der Zylinder Z; /» in das Volumen v

Vz = 2o o (h = Timaz) + 2200 00 Tmae erfiillt also

max

Vy :&v” h < 2wn(’l’L + 1) (tmaw - to)
n

o/2n(n+1) 4
< Umaz S - 4 tma;ﬂ —t S \ tmaa: —to)-
v \/ A ( 0) h ( 0)

tmaz Sei hier die Zeit, zu der sich Vol zu einem Punkt zusammengezogen hat. Das letzte <-Zeichen

folgt hier aufgrund der Tatsache, dass f, = 1/ W eine monoton in n fallende Folge ist und fiir

fi= % gilt. Der Beweis der Monotonie dieser Folge ist nicht ganz trivial und bedarf noch einer

kleinen Uberlegung, auf deren Ausfithrung wir an dieser Stelle jedoch verzichten méchten. O

Lemma 4.8. Seie = W <1, ¢ € (120°,150°) und g, die Ursprungsgerade, die die Rotati-

onsachse im Winkel ¢ schneidet. Dann existiert ein h > 1 und ein v, welches g, in einem Winkel
kleiner als 60° schneidet. Dieses v lost (x) auf [—h,e) und erfillt v(—h) = 0 und v'(—h) = co.

Beweis: Sei v eine Losung von x mit v(—h) = 0 und v'(—h) = co. h lassen wir zunichst beliebig.
Nach Lemma 4.7 gilt v(—¢) < "i\/ﬁ' Angenommen v'(—¢) > 0. Dann folgt aufgrund der Konkavitét
von v fiir hinreichend grofes h, dass v'(—¢) < v'(—h+1) < ni\/ﬁ -1, wobei die zweite Ungleichung
gelten muss, da v sonst seinen Maximalwert iiberschreiten wiirde.
Angenommen v'(—¢) < 0. Dann folgt wegen v’z — v < 0, dass [v/(—¢)| < V‘%E
Daher existiert zu § < 0.1 ein h > 1 so, dass v(—¢) < § und |v/(—¢)| < § gelten.
Wir nehmen an, dass v(z),|v’(z)| < 106 fiir alle z € [—¢,¢]. Dann gilt

gelten muss.

n+1
" (z)] < V1410062 (106)" " (10e8 + 108) < 2"+21076™.

Woraus wir schliefsen, dass
[v/(e)| < & +2"T210™6™(2¢) < 26

sein muss. Folglich wichst auch v(e) nicht tiber 100, was die entsprechende Annahme rechtfertigt.
Fiir hinreichend grofse A ist v in der Umgebung von z = 0 also beinahe eine Ursprungsgerade mit
Steigung 0. Fiir § < ¢ gilt dies insbesondere bis zum Schnittpunkt mit g,. Folglich schneidet sie
alle g, in einem Winkel spitzer als 60°.
Der letzte Argumentationsschritt wird in Abbildunge 4.2 nochmals verdeutlicht.

O

Korollar 4.9. Sei ¢ € (120°,121°) und hy > 1 und g, wie eben. Dann exisiteren ein ha > hq,
o € (119°,121°) und eine Losung v von x mit v(—ha) = 0 und v'(—hg) = oo, die g,, im 60°-
Winkel schneidet.

Ferner gilt, der Abstand des Schnittpunkts von v und g,, zum Ursprung ist kleiner als 0, 5.
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~ 90° < 60°

> 30°

Abbildung 4.2: Veranschaulichung zum Beweis von Lemma 4.8

Beweis: Im Beweis von Lemma 4.8 ist inbesondere zu sehen, dass fiir § — 0 auch mindestens eine
Teilfolge der zugehorigen h nach unendlich divergiert. Wir verkleinern also zunéchst § so, dass wir
ein dazu passendes hy > hy wihlen konnen. Da sich das zugehdrige v auf ¢ € [90°121°] mehr und
mehr einer Geraden parallel zur Rotationsachse annéhert, wenn § verkleinert wird, kénnen wir
0, falls notig, weiter verkleinern, bis v die Ursprungsgerade gj190 in einem Winkel grofer als 60°
schneidet, wihrend die Ursprungsgerade g, in einem Winkel kleiner als 60° geschnitten wird.

Abschliefend kénnen wir §, erneut falls nétig, noch weiter verkleinernum  sup  v(zs(¢)) < 0,5
P€E(119°,1)

zu gewéhrleisten, ohne die bisher konstruierten Eigenschaften zu verlieren. (x4(p), v(zs(¢)) sei hier

der Schnittpunkt von v und g,,.

Falls wir noch zeigen konnen, dass der Schnittwinkel von v und g, stetig in ¢ ist, folgt die Be-

hauptung.

Fiir den Fall, dass sich v und g, im Punkt (zs,v(x,)) schneiden kann ihr Schnittwinkel ¥(y) an

der Formel 1 1 1 1
(oten) (o)) = (o) [ (o)

abgelesen werden. Wenn z; stetig in ¢ ist, folgt dasselbe also fiir ¥(¢) als Kompsition stetiger
Abbildungen.
x5 erfiillt die Gleichung

cos(V())

F(p,xs) :=apxs —v(zs) =0,

wobei a,z = g, (x) ist. Aus dem Beweis der Konkavitdt von v wissen wir, dass v nie parallel zu
einer Ursprungsgeraden sein kann und daher F,(p,z,) = a, — v'(x5) # 0 gilt.

Der Satz von der impliziten Funktion liefert nun, dass x, lokal eine stetige Funktion von ¢ ist.
Da v konkav ist, existiert fiir jedes ¢ hdchstens ein solcher Schnittpunkt. Da ¢ beliebig war, folgt
damit, dass x5 auch global stetig in ¢ ist. O
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Lemma 4.10. Sei z € St und y € R? \ B! so, dass y1 < vy < 0 und x2 =y > 0. Dann gilt

(x,y) > 1.

Beweis:
(2,y) = 21y1 + T2y2 = |21|jta| + 25 > 2F + 23 =1

O

Lemma 4.11. Sei h > 1 und v eine Lésung von (x) mit v(—h) = 0 und v'(—h) = oco. Dann
existiert ein xo < 0 mit 22 +v(x9)? = 1 und es gilt v(z) < 1 fiir alle x € [—h, zo).

Beweis: Nach Lemma 4.2 existiert v bis einschlieflich = 0. Es geniigt also zu zeigen, dass v bis
zur S! kleiner als 1 bleibt.

Wir definieren g(z) := v/1 — z2. g ist kleiner als 1 und erfiillt ¢’(z) = 70 und g’ (z) = ﬁ.
Als néchstes definieren wir fiir € (—h,0) y, so, dass ¢'(y,) = v'(x) und die Translation T}, so, dass
T,x = y,. Dann ist g, := g(Tx,x) gerade der Graph derjenigen Einheitssphire mit Mittelpunkt
auf der Rotationsachse, deren Ableitung im Punkt xg mit v'(zg) iibereinstimmt.

Aus Lemma 4.4 wissen wirn nach einer Drehung des Koordinatensystems um 90°, dass es ein € > 0
gibt, sodass v(z) < g_pn(x), v'(z) < ¢, (z) und v"(z) < ¢”, (x) fiir alle x € (—h, —h + ¢) gelten.
Ohne Einschrinkung wéhlen wir € so klein, dass auf diesem Intervall auch v' > 0 gilt.

Da auf diesem Intervall 0 < ¢/ () = v'(z) < ¢",(2) gilt, folgt 0 >y, > 1+ (h — |z]) = y—p und
damit g(yz) > g(y—n).

Mit v(z) < g_p(x) liefert dies zusétzlich v(z) < g, (z) fir alle z € (—h, —h + ¢).

Da g < 1 sind wir fertig, falls diese Ungleichung fiir alle € (—h, 0) erhalten bleibt.

Um dies zu zeigen nehmen wir an, es gébe ein ¢ € (—h,0), bei dem g4, (xo) = v(zo) gilt. Aukerdem
wollen wir zunéchst den Fall v’(z() > 0 betrachten.

Nach Konstruktion gilt v(z0) = gz, (20) = 9(ya,) und v'(z0) = g4, (20) = 9’ (Ya0)-

Setzen wir dies in (xx) ein, so erhalten wir

V' (20) =v/ T+ g Waa)® 9Wao)" " (09 (Yay) — v(w0))

1 3 5 n+1
- ygcg + ya:g n—1 ( —Yzo
=/ —5" 9(Ya) zo——~ — v(z0)
' 12, 0 9(Yao)

n+1

- m g(yxo)"_lg(;;)<<v(?o)>’<g(y;;0))>

= (oo (o)) < s =) = sz

Falls g < y., folgt die Ungleichung in der vorangegangenen Rechnung aus Lemma 4.10. Falls
To > Yu, gilt, gilt auch 23 + v(z0)? < 1 und wir sind ebenfalls fertig.

Somit wissen wir also, dass v (x¢) < gl (z0). Aus Stetigkeitsgriinden gilt damit auch v"(z) < g;/ ()
fiir alle x € [zg, o + €) fiir ein € > 0. Durch das Vergleichsprinzip folgt weiter, dass v(z) < g, ()
und v'(z) < g, (x) fiir alle x € [zg, 20 + €) gelten. Da wir angenommen haben, dass v'(z¢) > 0
ist, schlussfolgern wir genau wie in der Umgebung von —h, dass sogar v(z) < g.(x) fir alle
x € [zg, x0 + €) gilt.

Damit haben wir gezeigt, solange v’ > 0 gilt, wird v g, hochstens von innen beriihren. Dort gilt
also v(z) < g.(z) < 1.

Da v konkav ist, geniigt dies, da v’ lediglich einen einzigen Vorzeichenwechsel vollzieht.

O

Bemerkung 4.12. Alle bisher gezeigten Aussagen, waren unabhéngig von der Dimension n der
Fische deren Existenz wir zu zeigen versuchen.
Die Verallgemeinerung der ab hier vorgestellten Aussagen auf n > 1 ist uns jedoch nicht gelungen,
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weshalb wir an dieser Stelle darauf hinweisen, dass nachfolgende Lemmata nur fiir den {ibrigen
Fall n = 1 Giiltigkeit haben.
Fir n =1 wird (%) zu

2u'(p)?

W) u(p) (u(p)® +u'(9)?). (4%)

u () = u(ep) +

Lemma 4.13. Sein =1 und u eine Losung von (4x). Dann liegt zwischen einem Minimum und
einem Mazxzimum von u stehts ein Abstand von mindestens 90° und weniger als 128°.

Beweis: Aus den Ergebnissen in [5] oder [6] folgt, dass der Abstand d zwischen einem Maximum

s w2

und Minimum von u im Intervall (% ﬁ) liegt. Wegen 5=90° und %’&173.30 folgt die Behaup-
tung. O

Lemma 4.14. Sein = 1 und u eine Losung von (4x) auf [po,v1]. Dann ist 4, die Spiegelung
von u an o1, mit a(p; + ©0) = u(p1 — @) eine Losung von (4%) auf [p1,2¢01 — o).

Beweis: Die Aussage folgt direkt aus der Autonomie von (4x) und der Invarianz von (4x) unter
der Ersetzung von ¢ durch —¢. O

Lemma 4.15. Sein =1 und h > 1. u sei eine Losung von (xx) mit uw(0) = h, v/(0) = 0 und
maximalem Ezistenzintervall Iq,. Dann gilt Iy, = R.

Beweis: Wir wissen bereits, dass u bis mindestens ¢ = 90° existiert und in einer Umgebung der
0 streng monoton fallend ist. Folglich hat u in ¢ = 0 ein Maximum. Wenn wir zeigen koénnen,
dass u bis zu einem Minimum existiert, folgt der Rest der Behauptung aus 4.14. Dieses Lemma
liefert, dass man u in seinem Minimum durch eine an ¢ = ¢, gespiegelte Version von u fortsetzen
kann. Wiederholt man dieses Verfahren in allen folgenden Maxima und Minima erh&lt man eine
periodische Losung @ von 4x, die auf ganz R definiert ist. Aufgrund der Eindeutigkeit von Losungen
ist u = u.

Wir wissen nach Lemma 4.2, dass w bis mindestens ¢ = 90° existiert und aus Lemma 4.11, dass
u in einem Winkel ¢y < 90° die Einheitskugel um den Ursprung durchstoft.

Sei 1 € (90°,128°) der Winkel, in dem w ein Minimum annimmt oder aber das Supremum von
I'maz- Mit Lemma 4.13 folgt, dass u(p) < 1 und «/(p) < 0 fiir alle ¢ € (¢o, ¢1) gelten muss. Damit
haben u und «’ eine obere Schranke.

Da auf diesem Intervall u <1 gilt, gilt nach (4x)

2u/2

—u(u? +u'?) > 0.
u

u//:u_"_

Damit hat « mit u'(¢g) eine untere Schranke. Es bleibt u > 0 auf (yg, ¢1) zu zeigen.
Dazu definieren wir —c := %(@O) < 0 und betrachten die Differentialgleichung zu %, die sich aus

(%) ergibt zu
2 2
<w>'u"ujl+<u'> 2 (H(w) )
u u u u u

’
u

, I
Da u < 1 gilt, ist somit (%) > 0. Weiter erhalten wir hieraus “ > —c, also

u
lu'| < cu.

Mit dem Vergleichsprinzip fiir gewohnliche Differentialgleichungen folgt, dass w auf I hochstens
exponentiell abfallen kann und daher positiv bleibt. O
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Lemma 4.16. Sei h* > 1 und fur h € (1,h*) sei up die Losung von (%) mit w(0) = h und
u/(0) = 0. Dann ist die Abbildung (h,p) — up(p) auf (1, h*) x R stetig differenzierbar.

Beweis: Da uy, Losung von (%*) ist erfiillt es

(o) = un(p) + 20—y (0) — un(p)u ()% =: F(h, 0, un (), 1}, (9))
up(0) = h
uy,(0) = 0

Nach Theorem 8.17 und 8.18 in [2] geniigt es zu zeigen, dass F, DF, DoF und D3F' gleichméfig
Lipschitzstetig sind, um die Bahauptung zu beweisen. Da sémtliche Ableitungen von F' Polynome
in up, u}, und % sind, reicht es dazu weiter zu zeigen, dass up, und uj, gleichméfig beschrankt sind

d inf > 0 gilt.
un (h,go)el(I}7h*)><RUh((p) gi

Da wir bereits gesehen haben, dass die Losungen u;, periodisch mit einer Periode kleiner als 180°
sind, reicht es dies fiir ¢ € [0, 180°] zu zeigen.

Sei zunéchst ¢ € (0,45°). Wir wissen aus Lemma 4.2, dass u; in diesem Intervall nie parallel
zur Ursprungsgeraden mit ¢ = 90° verlduft. An Gleichung (8) sehen wir, dass hieraus folgt, dass
sin(p)u(p) — cos(p)u’ () > 0 ist.

Einige leichte Umformungen zeigen, dass fiir ¢ € (0°,45°)

—uj, () = [uj ()| < tan(p)un(p) < tan(45%)un (). (9)

Da uj, auf diesem Intervall noch monoton fallend ist, folgt u)(¢) € [0,—tan(45°)h] fir alle
¢ € [0,45°]. h kann natiirlich weiter durch h* abgeschétzt werden.

Da wir in Lemma 4.11 gesehen haben, dass der Abstand zu Rotationsachse stets kleiner als 1 ist,
kénnen wir folgern, dass fiir ¢ € [45°,90°] up(¢) < v/2 gelten muss. Damit ist in diesem Intervall
%(90) —up(p) > 0 und wir kénnen uj wie folgt abschétzen:

ujl(p) > un(p) — un(p)® > Vo

Integration liefert nun, dass

c:= sup lup, ()] < tan(45°)h* + v T
(hyp)E€(1,h*) x[0°,90°] 4

Aus 4.11 ist weiter ersichtlich, dass es ein @5, € (0°,90°) gibt in dem up(¢p) = 1 gilt. Aufgrund
der Monontonie von u, bis zum Minimum bei ¢g , > 90°, bleibt u;, zunéchst kleiner 1. An (%x)
sieht man nun, dass uj, > 0 auf (¢n, @o,n) gilt. Folglich hat uj, auf (0°,90°) bereits sein Minimum
angenommen, welches wir durch —c abschétzen kénnen. Da Lésungen von (x*) in ihrem Minima
und Maxima schlicht gespiegelt werden, ist ¢ bereits eine Schranke fiir das betragsméfige Maximum
von uj, (¢) auf R.
Damit ist u}, (¢) auf (1,R*) x R also gleichméfig durch +c beschrénkt.
Aufgrund der Monotonie von uj zwischen Maximum und Minimum und der Periodizitét ist uy,
nach oben durch h < h* beschréankt.
Im Beweis von Lemma 4.15 haben wir aufierdem gesehen, dass |u'| > u/(¢p)u fur alle ¢ € [¢n, @o.1)
gilt und erhalten somit mit dem Vergleichsprinzip wuy, () > eun(en)(e=en) fiir alle @ € [en, on]- Da
up, sein Minimum in diesem Intervall annimmt, sind wir fertig, wenn wir diesen Term gleichméfig
gegen ein g > 0 abschétzen.
Um dies zu tun schétzen wir uj,(¢,) durch —c und ¢ — ¢, durch 7 ab.
Damit sind alle Ableitungen von F' gleichméfig beschrankt und damit F' und seine Ableitungen
gleichméfig Lipschitz-stetig.

O

Lemma 4.17. Sei h > 1 und u eine Losung von (4x) mit u(0) = h und «'(0) = 0. u nehme
in o € (90°,128°) sein Minimum an. Weiter sei 1 > ¢o minimal mit u(p1) = 1. Dann ist der
Schnittwinkel 9(¢) von u(p) mit der Ursprungsgeraden g, in (o, p1) streng monoton wachsend.



Johannes Krotz 23

Beweis: 91,(p) sei der Schnittwinkel von u, mit der Ursprungsgeraden unter dem Winkel ¢. Dann
ist Y5 (¢p) = 90° und nach Gleichung (5)

/

Up,
2 2"
\/uh+uh

Leiten wir dies nach ¢ ab und benutzen wir Gleichung (xx) (n = 1), so erhalten wir

cos(¥p,) =

u2 u// _ uhu/Q 2u/2 1
(cos(@n(p))) =k~ Unth _ [u (u 228 e+ u)) - uu] B

(s, + ) un (uf, + w2
(w4 ) (un—ui)  (un— )

T W@ v

Solange u < 1 ist, ist diese Ableitung streng positiv, was bedeutet, dass die Ableitung von 9},
streng negativ ist. O

Bemerkung 4.18. Um mit Hilfe der bisher gezeigten Aussagen 1.1 zu beweisen, wollen wir im
folgenden den Spiegelungswinkel ¢, und die Fischfunktion f;, definieren.

Dazu sei fiir b > 1 uj, die Losung von (%) mit up(0) = h und uj, (0) = 0. ¢y, sei fiir > 1 der
keinste Winkel aus (90°,180°) der eine der folgenden Eigenschaften hat:

1. up(on) =1
2. uj(on) = M\E“), was gleichbedeutend damit ist, dass u;, die Ursprungsgerade mit Winkel
wp im 60°-Winkel schneidet.
3. o = 179° .
Uy, sei die Losung von (xx) mit @y, (¢n) = un(pn) und @}, (¢n) = —uj, (on).

Hierauf basierend definieren wir nun die folgende Funktion :

_Jun(p)  firp<g
WA= D) s

Wir werden als néchstes zeigen, dass f; (180°) stetig von h abhéngt, dass es ein h* gibt, fiir welches
f71-(180°) = 0 gilt und, dass up+ und @p- in pp+ die 120°-Bedingung erfiillen. Ist all dies erfiillt,
so ist fp~ ein Netzwerk, aus dem durch Spiegelung ein Fisch konstruiert werden kann.

Lemma 4.19. Seien A = A C B und f,g : B — R so, dass f auf B stetig ist. g sei auf A
ebenfalls stetig und es gelte f(x) < g(x) fir alle x € B\ A und f(x) < g(z) fir alle x € A. Dann
ist m: B — R mit x — min(f(z),g(x)) stetig.

Beweis: Sei C' C R abgeschlossen. Dann ist das Urbild von C unter m gegeben durch

m~H(C) ={z € B: (f(z) € C A f(z) < g(x)) V (9(z) € CAg(x) < f(x))}
=({zeB: f(z)cCyn{zcB: f(z) < g(z)})
UfzeB:g(x) e Cyn{z e B:g(z) < f(z)})
CA
=({zeB:f(z)eC}n{zeB: f(z) <g(z)})
U{z e A:g(@) e Cyn{z e B:g(x) < f(z)}).

Wir zeigen, das diese vier Mengen jeweils abgeschlossen sind, sodass dasselbe auch fiir m=1(C)
gilt.
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{x € B: f(z) € C} = f~1(C) ist als Urbildmenge einer stetigen Funktion abgeschlossen.
Fiir die zweite Menge gilt {x € B : f(z) < g(z)} = B\AU{z € A: f(x) < g(x)}. Die Menge B\ A

ist als Komplement der offenen Menge A in B abgeschlossen und {z € A : f(z) < g(x)} ist in A,
und daher auch in B, abgeschlossen, da f und g auf A stetig sind.
{zx € A: g(x) € C} ist gerade die Urbildmenge von C unter g|4. Da g auf A stetig ist, ist sie in A
und damit auch in B abgeschlossen.
Weiter gilt, da {x € B:g(z) < f(z)} € A ist und f und g dort stetig sind, dass diese Menge
abgeschlossen in der Spurtopologie beziiglich A und folglich auch in der Topologie von B ist.

O

Lemma 4.20. Se:
W= {h>1: 3¢ =: pgoo(h) mit Ip(peo-(h)) = 60°, wepe(h) € (90°,180°) und up(peoe(h)) <1}

Dann lisst sich W 2 h + @goe (h) stetig auf W fortsetzen. Auf W gilt 91, (pg00 (h)) = 60° und fiir
alle h € W gilt up(peoo(h)) = 1 oder pgoo (h) = 180°.

Beweis: Wir zeigen diese Aussage in mehreren Schritten.

1. Seien (hx)ken,ho > 1 mit hy — ho fiir & — oo Im Beweis von Lemma 4.16 haben wir
gesehen, dass up, (¢) punktweise gegen up, (@) konvergiert und, dass fiir alle h aus einem
beschrénkten Intervall uj, (¢) gleichméfiig beschrénkt und uy(¢) gleichméfig beschrénkt und
echt grofer Null ist. Ein Blick in (4%) zeigt, dass damit auch uj gleichméfig beschrénkt ist.

!
Up,

!
. ufo fiir £ — oo. Aufgrund der Periodizizédz von
e 0

Losungen von (4x) gilt dies fiir alle (.

Es folgen up, = up,, wj, = uj, und

2. Als néchstes zeigen wir, dass pgoo(h) auf W stetig ist. Dazu betrachten wir die @ggo (h)-
definierende Gleichung

F(h, ¢eoe (h)) = In(p) — 60° = 0. (10)
Ableiten nach @ggo (h) liefert

Fy(h, @) = 9,(p)

Wir wissen aus Lemma 4.17, dass ¢}, (¢) # 0 fiir alle b mit up,(pgoo (h)) < 1, also insbesonde-
re fiir alle h € W gilt. Damit folgt mit dem Satz von der implitziten Funktion, dass @gpo (h)
lokal stetig in W ist. Da ¥ (¢) monoton in ¢ ist, solange up(p) < 1 ist und da fiir jedes
andere Intervall [a,b] in dem wuy, kleiner 1 ist [a,b] N [90°,180°] = () gilt, ist pgoo (h) fiir jedes
h € W eindeutig bestimmt, sodass sogar bereits Stetigkeit in ganz W folgt.

3. Nun zeigen wir, dass W offen ist.
Sei dazu hg € W.

Da up, stetig ist und wup, (@600 (ho)) < 1, existieren ¢ > 0 und € > 0 so, dass

un, ((p60° (ho) — €, pe0e (ho) +€)) € (2¢, 1 — 2¢) gilt.

Aufgrund der stetigen Abhéngigkeit von Anfangswert von wy existiert weiter ein § > 0,
sodass fiir alle h € (ho — 0, ho +6) un((wsoe (ho) — &, vs0° (ho) +¢€)) C (¢, 1 — () gilt.

Somit ist nach Lemma 4.17 9}, (¢) # 0 fiir alle

(¢, h) € (po0e (ho) — €, ¢600 (ho) +€) X (ho — &, ho +6) .

Der Satz von der impliziten Funktion liefert analog zum Vorgehen in 2. die Existenz eines
0 < n < 6 so, dass fir alle h € (ho —n,ho + 1) ein stetiges ¢(h) mit J4(p(h)) = 60°
und @(hg) = weoo(ho) existiert. Da @(h) stetig ist, kann ein x so gewdhlt werden, dass
&(h) € (w00 (ho) — €, peoe (ho) + €) fiir alle h € (hg — Kk, hg + &) gilt.

Damit ist gezeigt, dass W offen ist.
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4. Angenommen g0 (h) kann stetig auf W fortgesetzt werden. Dann impliziert 1., dass fiir alle
h € W die Bedingung uy, (peoe (h)) < 1 gilt. Da 9 (p) = 60° #quivalent ist zu Z;’:Eg; =3
folgt aus 1. weiter, dass fiir alle h € W auch 95,600 (h) = 60° gilt.

Da W offen ist, muss h € W\ W = W dann @gpo (h) € {90°,180°} oder uy,(@g00 (h)) = 1 er-
fillen. @goo (h) = 90° kann ausgeschlossen werden, da fiir alle » > 1 die Aussage u},(90°) < 0
gilt und daher Z%EZSZ; £ /3 gilt.

Es bleibt also zu zeigen, dass ¢gpe (h) stetig auf W fortgesetzt werden kann.

5. Sei hg € OW und W D (hy),y ein Folge, die nach hg konvergiert. Da @goo (hy) fiir alle k € N
beschriankt bleibt existiert eine konvergente Teilfolge, die wir ohne Einschrankung auch mit
(h&) ey bezeichnen. Gelte @goo (hy,) — ¢ fiir ein @. . In 2. haben wir gesehen, dass stetige
Fortsetzbarkein kein Problem ist, solange up, (@) < 1 ist.

Nehmen wir also ohne Einschrankung an, dass up, (@) = 1 gilt. Da @ggo (hy) — ¢ folgt mit
den gleichméfigen Konvergenzen aus 1., dass ¥p, (@) = 60°.

Angenommen es gibt ein € > 0 und eine andere Teilfolge (h;),.y € W die nach hg konvergiert
fiir die pgoo (hy) = ¢ ¢ (P — e, + ¢€) fiir | — oo gilt. Fiir dieses ¢ muss ebenfalls up, (¢) = 1
und Yy, (@) = 60° gelten.

Damit folgt up, (@) = un, (p) und uj, (p) = uj, (¢) > 0. Betrachtet man eine Losung u von
(%) stellt man fest, dass solche Punkte ¢ und ¢ gerade ein Vielfaches der Periodenlinge
von up, als Abstand haben miissen. Eine Periodenlénge betrigt mindestens 180°.

Damit ist gezeigt, dass @go (h) stetig auf W fortgesetzt werden kann. O
Lemma 4.21. Die Funktion h — f}(180°) ist auf (1,00) stetig.

Beweis: Da up,u},, 4 und 4, aus denen f, konstruiert ist, stetig von ihren Anfangswerten ab-
héngen, ist h — f;(180°) stetig, wenn h — ¢, aus der Definition von f; stetig ist.
Um dies zu zeigen definieren wir zunéchst ¢y, = min{p € (90°,256°) : us(p) = 1,u}, () > 0}.
Die Monotonie von uy, zwischen seinen Minima und Maxima und die Tatsache, dass deren Abstand
zwischen 90° und 128° liegt, liefert sowohl die Existenz als auch die Eindeutigkeit von ¢; 5. Da
nach Konstruktion «'(p1,) # 0 liefert der Satz von der impliziten Funktion zusammen mit der
Eindeutigkeit, dass die Funktion h + ¢y 5, stetig von h abhéngt.
Damit ist ¢p, := min(pq 5, 179°) ebenfalls stetig.
Sei nun @epo 1, die stetige Fortsetzung von @eoo (h) auf W, welche wie gerade eben in Lemma, 4.20
definiert sind. Dann ist ¢, = min(@ege,n, @5 ). Nach Lemma 4.19 ist ¢y, also stetig.

O

Lemma 4.22. Sei h > 1 und § > 0 so, dass 0° < ¢ — 6 und pp, + 6 < 180° gelten. Dann ist
Iulon +6) = frnlpn — 8) und fi,(on + ) = —fi,(on — 0).

Beweis: Dies folgt direkt aus der Konstruktion von f;, und Lemma 4.14.

Korollar 4.23. Sei h > 1. Falls @5 = 179°, so ist f},(180°) < 0.

Beweis: Wir wissen, dass up sein Minimum in einem g € (90°,128°) annimmt, und, dass der
Abstand zum néchsten Maximum grofer ist als 90°. Daraus folgt, dass u},(178°) > 0 ist, woraus
mit dem eben gezeigten Lemma 4.22 folgt, dass @}, (180°) < 0 ist. O

Korollar 4.24. Seih > 1 und o € (90°,128°) der Winkel unter dem wy, sein Minimum annimmit.
Wenn up (o) < cos(45°) und up(@n) = 1 gilt, so ist f;(180°) < 0.

Beweis: Sei h > 1 so, dass up(pg) < c0s(45°) =: WUin. Dort gilt auch u), (pg) = 0. Aufgrund der
Konkavitdt von Losungen v von (xx) bleibt up auch fiir grofere ¢ sicher unterhalb der Tangente
g an u in ¢ = g (vergl. Abb. 4.3) . Daher wird u;, den Einheitskreis um den Ursprung spéter
schneiden als g. Bezeichnen wir den grofieren der beiden Winkel unter dem g den Einheitskreis
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Umin = — _
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Abbildung 4.3: Veranschaulichung zum Beweis von Lemma (4.24) mit Ausschnitt eines Einheitskreises
sowie Hilfsdreieck (schwarz) und einem moglichen Verlauf von up(¢) (rot)fir ¢ > ¢o

schneidet mit g4, so folgt o < @4 < .

g kénnen wir aber berechnen, wenn wir das Dreieck betrachten welches von den Ursprungsgeraden
mit Winkel ¢o bzw. ¢, und g selbst aufgespannt wird (Vergleiche zur Veranschaulichung Abbildung
4.3).

An diesem Dreieck sehen wir, dass

0 < cos(pg — o) = lem'n < cos(45°)

ist. Es folgt ¢4 > 45° + q.
Damit kénnen wir schliefen, dass auch @y, — @ > 45° gilt. Da o € (90°,128°) ist, folgt, dass
180° — ¢n < pn — o ist. Da wj(¢) > 0 auf (po, ) gilt, folgt daher nach Lemma 4.22, dass
i) () < 0 fiir alle ¢ € (g5, 180°].

O

Korollar 4.25. Fiir jedes hy > 1 existiert ein hy > h mit f; (180°) > 0.

Beweis: Sei hy > 1. Wir wéhlen nun hgy > h; so, dass up, die 60°-Bedingung in ¢, € (119°,121°)
erfiillt und wup, (vs) < 0.5 ist. Ein solches ¢, existiert nach Lemma 4.9. Durch diese Wahl ist
¥s = Ph,. Da das Minimum von up, in einem ¢q € (90°, 128°) angenommen wird, ist der Abstand
zwischen ¢p und ¢}, kleiner als 31°. Folglich nimmt nach Lemma 4.22 @, sein Minimum in einem
2 < 152° an. Da der Abstand zwischen diesem Minimum von @, und seinem néchsten Maximum
mindestens 90° betragen muss, ist fp, auf (@2, 180°] streng monoton wachsend. O

Lemma 4.26. h+— f;(180°) hat eine Nullstelle h*. In dieser Nullstelle gilt Op~(pp+) = 60°.

Beweis: Sei ol € (90°,128°) der Winkel unter dem u;, sein Minimum annimmt. Wir wissen aus
Lemma 4.7, dass der maximale Abstand von wj, zur Rotationsachse fiir grofte h nach Null geht.
Daraus folgt insbesondere, dass auch der minimale Abstand von wp auf (0,180°) zum Koordi-
natenursprung up(pf) nach Null geht, wenn h hinreichend grof ist. Sei h > 1 der maximale
Startwert, bei dem gilt u; (¢f) = 0,7. Ein solcher Existiert, da fiir u(¢) = 1 fiir alle ¢ gilt. Wir
setzen gog = o

Nach Korollar 4.25 wissen wir, dass es ein hy > h gibt, sodass [1,(180°) > 0 gilt.

Da 0,7 < cos(45°) ~ 0,71 gilt, wissen wir aus Korollar 4.24 ferner, dass im Falle u; (¢;,) = 1 folgt,
dass f}KL(180°) < 0.

Dasselbe gilt nach Korollar 4.23, falls ¢; = 179°. Damit wissen wir sicher, dass falls h — f7 (180°)
eine Nullstelle h* besitzt, auch ¥4+ (@pp+) = 60° gelten muss.

Angenommen es gilt 9;(¢;,) = 60°. Dann ist u; () € [0.7,1] fiir alle ¢ € [¢o,9;], da uj, nach
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dem Minimum monoton wachsend ist und falls es ein @ € (¢o, ¢;,) mit u; (@) = 1 gibe, p; = @
folgen wiirde, was ein Widerspruch ist.

Betrachten wir nun die Entwicklung von 9; (¢), dem Schnittwinkel mit den Ursprungsgeraden, die
die Rotationsachse im Winkel ¢ schneiden, auf diesem Intervall.

Da bei ¢q ein Minimum ist gilt ¥ (¢0) = 90°. Nach Lemma 4.17 kennen wir (cos(ﬁ‘;l))/.

Es gilt

’Uf*u:§
h __h =1-u; <1-0.7=0,51

Durch Integration dieser Ungleichung sieht man mit 45° = 7 fiir ¢ € (o, po + 45°), dass

0 < cos (9;,(po + ¢)) <0,51p <0, 51% < 0,5 = cos(60°)

gilt.

Damit folgt weiter, dass auf diesem Intervall J; > 60° gilt und daher ¢; > o + 45° ist.

Wir sehen also, dass o;, —po > 180° —;, gilt. Da uj;, zwischen ¢y und ;, streng monoton wachsend
ist, folgt hieraus mit Lemma 4.22, dass f; (180°) < 0 ist.

Wir haben also gezeigt, dass h — f;(180°) auf |:il,il2:| einen Vorzeichenwechsel vollzieht. Nach
dem Mittelwertsatz gibt es daher auch eine Nullstelle. O

Damit ist Theorem 1.1 bewiesen. In Abbildung 4.4 ist zum Abschluss noch eine numeri-
sche Naherung eines solchen rotationssymetrischen unter dem Gaufskriimmungsfluss homothetisch
schrumpfenden Fisches zu sehen.

Vergleichbare numerische Losungen fiir héhere Dimensionen als n = 1 legen nahe, dass derartige
Fische auch in héheren Dimensionen existieren, auch wenn der Beweis hierfiir im Rahmen dieser
Arbeit nicht erbracht werden konnte.
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Abbildung 4.4: Numerische Losungen von (%) fiir n = 1, aus denen sich ein homothetisch schrumpfender
rotationssymmetrischer Fisch konstruieren lasst.
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