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1 Einleitung und Fazit
In [1] gelang es Oliver Schnürer et al. unter anderem die Existenz eindimensionaler fischförmiger
Netzwerke, die homothetisch schrumpfen und den Gaußkrümmungsfluss erfüllen, zu beweisen. Eine
qulitative Darstellung eines solchen Netzwerks ist in Abbildung 1.1 zu sehen.

Abbildung 1.1: Qualitative Darstellung eines fischförmigen Netzwerks

Das Ziel dieser Arbeit war der Beweis von Theorem 1.1, welches dieses Ergebnis auf n - dimen-
sionale rotationssymmetrische homothetisch schrumpfende Fische, die sich unter dem Gaußkrüm-
mungsfluss entwickeln, erweitert. Während die Verallgemeinerung für beliebige n in dieser Arbeit
nicht gelungen ist, so zeigen wir doch einen alternativen Beweis für n = 1. Ein Großteil der hierzu
verwendeten Lemmata ist jedoch auch für größere n gültig, sodass die Existenz höherdimensiona-
ler Fische eventuell in zukünftigen Arbeiten durch die Verallgemeinerung nur weniger Aussagen
gezeigt werden könnte.

Theorem 1.1.
Es gibt rotationssymmetrische homothetisch schrumpfende Fische, die den Gaußkrümmungs-
fluss erfüllen.

Beweis: Für n = 1 wurde die Behauptung in [1] gezeigt.
Unser Alternativbeweis erstreckt sich über die Kapitel 3 und 4.
Ein Beweis für n > 1 ist nach wie vor ausstehend, wäre jedoch zum Beispiel durch die Verall-
gemeinerung der Aussagen 3.1ff. möglich.

Damit sowohl wir als auch der Leser alle zum Beweis dieses Theorems notwendigen Werkzeuge
zur Hand haben, geben wir in Kapitel 2 zunächst einen Überblick über die verwendeten Definitio-
nen und unsere Notation. In diesem Abschnitt werden auch alle bisher benutzten, jedoch aufgrund
besserer Lesbarkeit noch nicht rigoros erläuterten Begriffe, präzisiert.

In Kapitel 3 stellen wir fest, dass sich der Beweis von Theorem 1.1 auf den Beweis der Exis-
tenz einer Lösung einer gewöhnlichen Differentialgleichung unter geeigneten Randbedingungen
reduziert. Wir werden dort aus unterschiedlich parametrisierten Hyperflächen drei verschiedene
gewöhnliche Differentialgleichungen herleiten und noch einmal explizit nachweisen, dass ihre Lö-
sungen geometrisch identisch sind.

Als nächstes werden in Kapitel 4 besagte Gleichungen darauf untersucht, ob es Lösungen zu ihnen
gibt, die die gefordeten Kriterien erfüllen.
Im Laufe von Kapitel 4 konnten einige Aussagen leider nur für den 1-dimensionalen Fall gezeigt
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werden. Während numerische Berechnungen die Existenz von rotationssymetrischen Fischen auch
für höhere Dimensionen nahe legen, bleibt die Aussage also dennoch ungeklärt. Darin diese Fäl-
le, durch Verallgemeinerung einiger Lemmata aus dieser Arbeit oder auch auf gänzlich anderem
Wege, noch zu zeigen steckt also durchaus noch Potential für weiterführende Arbeiten.

2 Notation und Definitionen

Dieser Abschnitt enthält die notwendigen geometrischen und mathematischen Grundbegriffe sowie
die im weiteren Verlauf verwendete Notation und orientiert sich daher sehr stark an [3].

2.1 Notation

Bemerkung 2.1. Es gelte stets m,n ∈ N.

Notation 2.2. Seien Ω ⊆ Rn und I ⊆ R offen und f : Ω→ Rm und g : Ω×I → Rm differenzierbar.
Dann schreiben wir

1. fxi = fi = ∂f
∂xi . (1 ≤ i ≤ n)

Ist n = 1, so schreiben wir auch f ′.

2. fxixj = fij = ∂2f
∂xi∂xj

3. Df = (f1, ..., fn) und Dg = (g1, ..., gn).

4. ġ = dg
dt .

Bemerkung 2.3. (Einsteinsche Summenkonvention)
Taucht ein lateinischer Index in einem Ausdruck einmal als oberer und einmal als unterer Index
auf so summieren wir über diesen Index von1 bis n. Liegt dieselbe Situation bei einem griechischen
Index vor, wird von 1 bis n+ 1 summiert. Für x ∈ Rn, y ∈ Rn+1 und A ∈ Rn×n+1 gilt also

xiAiαy
α =

n∑
i=1

n+1∑
α=1

xiAiαy
α = xTAy,

wobei links die Einsteinsche Summenkonvention angewendet wird.
Die Einheitsmatrix wird hierbei stets durch das Kronecker-Delta ausgedrückt.

2.2 Geometrische Grundbegriffe

Definition 2.4. (Immersion & Einbettung)
Sei Ω ⊆ Rn offen. Dann heißt X ∈ C1(Ω,Rm)

1. Immersion, falls dX(x) : Rn → Rm für alle x ∈ Ω injektiv ist.

2. Einbettung, falls X eine Immersion und X : Ω → X(Ω) bezüglich der Spurtopologien ein
Homöomorphismus ist.

Definition 2.5. (parametrisierte Hyperflächen)
Sei Ω ⊆ Rn offen und X ∈ Ck(Ω,Rn+1) eine Immersion. Dann heißt X eine parametrisierte oder
immersierte (Ck)-Hyperfläche.

Wir identifizieren fortan eine Hyperfläche X mit ihrem Bild X(Ω) ⊆ Rn+1.
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Definition 2.6. (Normale)
Sei Ω ⊆ Rn offen. Sei X : Ω → Rn+1 eine immersierte Hyperfläche. Dann heißt eine stetige
Funktion ν : Ω → Rn+1 mit |ν(x)| = 1 und ν(x)⊥Xi(x) für alle x ∈ Ω und 1 ≤ i ≤ n ein Ein-
heitsnormalenfeld an X. ν(x) heißt (Einheits-)Normale an X in x.

Definition 2.7. (Metrik)
Sei Ω ⊆ Rn offen und X eine immersierte Hyperfläche. Dann heißt g = (gij)1≤i,j≤n mit

gij = gij(x) := 〈Xi, Xj〉 = Xα
i δαβX

β
j

Metrik von X. Ihre Inverse bezeichnen wir mit (gij)1≤i,j≤n.

Bemerkung 2.8. g ist symmetrisch und positiv definit.

Definition 2.9. (Zweite Fundamentalform)
Sei Ω ⊆ Rn offen und X eine immersierte C2-Hyperfläche mit Normale ν. Dann heißt die symme-
trische quadratische Form A = (hij)1≤i,j≤n definiert durch

hij = hij(x) := −〈X,ij , ν〉

zweite Fundamentalform von X.

Definition 2.10. (Eigenwerte)
Seien (aij)1≤i,j≤n und (bij)1≤i,j≤n symmetrische quadratische Formen. ξ ∈ Rn \ {0} heißt Eigen-
vektor von (aij) bezüglich (bij) zum Eigenwert λ, wenn

aijξ
j = λbijξ

j

für alle 1 ≤ i ≤ n gilt.

Definition 2.11. (Hauptkrümmungen)
Die Eigenwerte von A bezüglich g heißen Hauptkrümmungen und werden hier mit λ1, ..., λn
bezeichnet.

Definition 2.12. (Gaußkrümmung)
Das Produkt der Hauptkrümmungen

K = λ1 · ... · λn

heißt Gaußkrümmung.

Definition 2.13. (Gaußkrümmungsfluss)
Eine Familie (X(·, t))t∈[ 0,T ) , T > 0, von immersierten Hyperflächen X(·, t) : Ω → Rn+1 erfüllt
den Gaußkrümmungsfluss, wenn X auf Ω× [ 0, T ) stetig ist und für alle (x, t) ∈ Ω× (0, T )

Ẋ = −Kν

gilt.

2.3 Rotationssymmetrische homothetisch schrumpfende Fische
Definition 2.14. (Homothetisch schrumpfend)
Sei T > t0 ∈ R und (X(·, t))t∈[ t0,T ) eine Familie von immersierten HyperflächenX(·, t) : Ω→ Rn+1.
Wir nennenX homothetisch schrumpfend, falls es eine differenzierbare Funktion µ : [ 0, T ) → R+

mit µ(t1, t2) < 1 für alle t1 > t2 ∈ [ 0, T ) und

{X(x, t1) : x ∈ Ω} = µ(t1, t2) · {X(x, t2) : x ∈ Ω}

gibt.
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Abbildung 2.1: Qualitative Darstellung eines rotationssymmetrischen Fisches

Definition 2.15. (Rotationssymmetrischer Fisch)
Es seien Ω1,Ω2,Ω3 ⊆ Rn offen und X1, X2, X3 rotationssymmetrische immersierte Hyperflächen.
e1 sei die Rotationsachse und E sei eine beliebige Halbebene, mit δE = e1.
Wir nennen

F :=

3⋃
i=1

{Xi(x) : x ∈ Ωi}

einen rotationssymmetrischen Fisch, falls es injektive Kurven α1, α2, α3 : [0, 1] → E mit
folgenden Eigenschaften gibt:

1. Für alle i ∈ {1, 2, 3} gilt αi([0, 1]) = Xi(Ωi) ∩ E.

2. α1([0, 1]) = {λ · x : λ > 1} für ein x ∈ E \ {0}.

3. α2(1), α3(1) ∈ span(e1) und α′2(1)⊥e1⊥α′3(1).

4. Für alle paarweise verschiedenen i, j, k ∈ {1, 2, 3} gilt
α−1i (αi ([0, 1]) ∩ αj ([0, 1])) = α−1i (αi ([0, 1]) ∩ αj ([0, 1]) ∩ αk ([0, 1])) = {0} .

5.
3∑
i=0

α′i(0)
|α′i(0)|

= 0.

Wir sagen eine Familie von rotationssymmetrischen Fischen (Ft)t∈[ 0,T ) , T > 0, erfüllt den Gauß-
krümmungsfluss, wenn die zugehörigen Familien von Hyperflächen (Xi(·, t))t∈[ 0,T ) , (i = 1, 2, 3),
den Gaußkrümmungsfluss erfüllen.
Ferner nennen wir Ft homothetisch schrumpfend, wenn Xi(·, t) für i = 1, 2, 3 homothetisch
schrumpfend sind und die Funktion µ(t1, t2) bei allen dreien auf [ 0, T ) dieselbe ist.

Bemerkung 2.16. Eine anschaulichere Interpretation von Definition 2.15 lautet wie folgt:

1. Ein rotationssymmetrischer Fisch entsteht aus einem Netzwerk aus drei injektiven Kurven
in einer Halbebene des R2 durch Rotation um die Kante dieser Halbebene.

2. Eine dieser Kurven ist eine Halbgerade, die den Ursprung nicht schneidet, aber zu einer
Ursprungsgeraden fortgesetzt werden kann.

3. Die anderen beiden Kurven enden auf der Rotationsachse und sind in diesem Punkt ortho-
gonal zur Rotationsachse

4. Der einzige gemeinsame Punkt der Kurven ist ihr Anfang.

5. In diesem Tripelpunkt schneiden sich die Kurven paarweise in einem 120◦-Winkel.

In Abbildung 2.1 ist beispielhaft ein Netzwerk von Kurven α1, α2, α3 dargestellt, die die Punkte
1. bis 5. erfüllen.
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3 Herleitung und Äquivalenz der Gleichungen
In diesem Kapitel werden wir aus der partiellen Differentialgleichung des Gaußschen Krümmungs-
flusses unter der Annahme es gäbe rotationssymmetrische und homothetisch schrumpfende Lösun-
gen gewöhnliche Differentialgleichungen herleiten. Deren Lösungen, sofern sie existieren, erfüllen
wiederum die besagten Annahmen, wodurch diese nachträglich gerechtfertigt werden.
Die resultierende gewöhnliche Differentialgleichung ist offenbar abhängig von der Wahl der Pa-
rametrisierung der Lösungen des Gaußkrümmungsflusses. Da manche der Aussagen, die wir in
nachfolgenden Kapiteln zu beweisen suchen in verschiedenen Parametrisierungen unterschiedlich
schwer zu zeigen sind, werden wir hier die gewöhnlichen Differentialgleichungen für drei verschie-
dene Parametrisierungen herleiten.
Anschließend weisen wir nach, dass die drei resultierenden Gleichungen dieselbe Geometrie beschrei-
ben und sich viele der Ergebnisse von einer der Gleichungen auf die jeweils anderen beiden über-
tragen lassen.

3.1 Herleitungen der gewöhnlichen Differentialgleichungen
Bemerkung 3.1. (Graphische Parametrisierung entlang der Rotationsachse)

1. Sei T > t0 > 0 und X : Rn × [ 0, T ) → Rn+1 eine rotationssymmetrische homothetisch
schrumpfende Lösung der Differentialgleichung des Gaußkrümmungsflusses. Ohne Einschrän-
kung gehe die Rotationsachse ez durch den Ursprung. Die Koordinate entlang dieser Achse
sei z ∈ R.
Ferner seien V : R × R und Y : Rn−1 → Sn−1 eine lokale Parametrisierung der (n − 1)-
dimensionalen Einheitssphäre, derart, dass

X(z, ϑ, t) = (V (z, t)Y (ϑ), z)

eine mögliche Parametrisierung von X ist. Da X rotationssymmetrisch um die ez-Achse ist,
existieren geeignete V und Y . Eine Veranschaulichung dieser Parametrisierung findet sich in
Abbildung 3.1.

Abbildung 3.1: Veranschaulichung der graphischen Parametrisierung entlang der Rotationsachse

2. In der obigen Parametrisierung erhalten wir folgende Resultate für die ersten und zweiten
Ableitungen von X: (i, j ∈ {ϑ1, ..., ϑn−1})

Xz(z, ϑ, t) =(V ′(z, t)Y (ϑ), 1)

Xi(z, ϑ, t) =(V (z, t)Yi(ϑ), 0)

Xij(z, ϑ, t) =(V (z, t)Yij(ϑ), 0)

Xiz(z, ϑ, t) =(V ′(z, t)Yi(ϑ), 0)

Xzz(z, ϑ, t) =(V ′′(z, t)Y (ϑ), 0)

Ẋ(z, ϑ, t) =(V̇ (z, t)Y (ϑ), 0)
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Hieraus lässt sich unmittelbar die Metrik g ablesen:

g = (〈Xl, Xk〉)1≤k,l≤n =

(
V 2(σij)1≤i,j≤n−1 0

0 1 + V ′2

)
,

wobei (σij) = (〈Yi, Yj〉) die Metrik der (n− 1)-dimensionalen Einheitssphäre ist.

3. Durch scharfes Hinsehen findet man die Normale

ν =
1√

1 + V ′2
(Y,−V ′).

Nutzt man die Tatsache aus, dass auf der Einheitssphäre die erste und zweite Fundamental-
form identisch sind und Y = νS

n−1

, dass also

σij = −〈Yij , Y 〉

gilt, sieht man leicht, dass auch

Yij = −σijY + τkijYk

gilt, wobei der zweite Term im Tangentialraum der Sphäre liegt und somit orthogonal auf
der Normalen steht.
Durch Einsetzen ergibt sich nun direkt die zweite Fundamentalform:

A = −(〈Xkl, ν〉)1≤k,l≤n =

(
V√

1+V ′2
(σij)1≤i,j≤n−1 0

0 −V ′′√
1+V ′2

)
.

4. Da σ als Metrik inbesondere invertierbar ist, können wir die Hauptkrümmungen, als Eigen-
werte der zweiten Fundamentalform bezüglich der Metrik, ablesen und erhalten

λz =
−V ′′

√
1 + V ′2

3 λϑ =
1

V
√

1 + V ′2
,

wobei λϑ mit Vielfachheit n− 1 auftritt.
Als Produkt dieser Hauptkrümmungen erhält man

K = − V ′′

V n−1

√
1 + V ′2

−n−2
.

Da X nach Annahme den Gaußkrümmungsfluss erfüllt, ergibt sich

〈Ẋ, ν〉 =−K

⇔ V̇√
1 + V ′2

= +
V ′′

V n−1

√
1 + V ′2

−n−2
. (1)

5. Aufgrund der Annahme, dass es sich bei X neben einer rotationssymmetrischen Lösung auch
um eine homothetisch schrumpfende Lösung handeln soll, fordern wir

µ(t) {(V (z̃, t0)Y (ϑ), z̃) : z̃ ∈ R} = {(V (z, t)Y (ϑ), z) : z ∈ R}

für µ(t) 6= 0 und ein festes ϑ und schreiben v(z̃) = V (z̃, t0). Es folgt µ(t)z̃ = z und
µ(t)v(z̃) = V (z, t). Woraus sich V (z, t) = µ(t)v

(
z
µ(t)

)
ergibt.

Für die Ableitungen von V folgt daher

V ′(z, t) =v′
(

z

µ(t)

)

V ′′(z, t) =
v′′
(

z
µ(t)

)
µ(t)

V̇ (z, t) =µ̇(t)

(
v

(
z

µ(t)

)
− v′

(
z

µ(t)

)
· z

µ(t)

)
.
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6. Einsetzen dieser Ableitungen in Gleichung (1) liefert

µ̇(t) (v (x)− v′ (x) · x) =
v′′(x)

µ(t)nv(x)n−1

√
1 + v′(x)2

−(n+1)

⇔ µ̇(t)µ(t)n =
v′′(x)

√
1 + v′(x)2

−(n+1)

v(x)n−1 (v(x)− v′(x)x)
, (2)

wobei die Substitution x = z
µ(t) vorgenommen wurde.

Wir haben implizit angenommen, dass v(x) − v′(x)x 6= 0 ist. Wir werden später nur v
betrachten, die dieser Annahme genügen oder Ursprungsgeraden sind. Rotiert man eine
Ursprungsgerade um die Rotationsachse, so erhält man einen Kegel, eine Ebene oder die
Rotationsachse selbst. Bei allen dreien handelt es sich um einfache Lösungen des Gaußkrüm-
mungsflusses.
Da in Gleichung (2) die linke Seite nur von t abhängt, während die rechte Seite allein von
x abhängt, folgt, dass beide Seiten gleich einer Konstanten c sein müssen. Für c = 0 folgt
µ ≡ 0. Für c 6= 0 ist die allgemeine Lösung

µ(t) = ± n+1

√
(n+ 1)c(t− t0)− µ(t0)(n+1),

solange der Term unter der Wurzel nicht negativ ist.
Aufgrund der Rotationssymmetrie können wir uns auf die positive Lösung beschränken und
stellen fest, dass c < 0 gelten muss, damit X homothetisch schrumpft. Ferner bemerken
wir, dass eine andere Wahl von |c| lediglich einer Zeitreskalierung entspricht, weshalb wir
ohne Einschränkung c = −1 wählen. Es kann auch nachgerechnet werden, dass im Raum
reskalierte Versionen von v(x) Gleichung (2) bei anderer Wahl von c erfüllen. Bei Homothe-
tisch schrumpfenden Lösungen ist dies nicht überraschend, da Translation in der Zeit und
Raumreskalierungen bei homothetisch schrumpfenden Lösungen äquivalent sind.

7. Gleichsetzen der rechten Seite von Gleichung (2) mit c = −1 und Auflösen nach v′′(x) liefert

v′′(x) =
√

1 + v′(x)2
n+1

v(x)n−1 (v′(x) · x− v(x)), (?)

und damit eine gewöhnliche Differentialgleichung aus deren Lösungen rotationssymmetrische
homothetisch schrumpfende Lösungen der Gleichung des Gaußkrümmungsflusses konstruiert
werden können.

Die Gleichung (?) ist zum Beweis einiger wichtiger Aussagen in Bezug auf Theorem 1.1 gut
geeignet, weist aber beispielsweise den Nachteil auf, dass ihre Lösungen in manchen Punkten un-
endlich hohe Ableitungen haben müssten, um aus ihnen einen Fisch zu konstruieren. Daher wollen
wir aus einer anderen Parametrisierung von X nun eine weitere gewöhnliche Differentialgleichung
herleiten, die dieses Manko nicht aufweist.

Bemerkung 3.2. (Winkelparametrisierung)

1. X sei wie zuvor eine rotationssymmetrische homothetisch schrumpfende Hyperfläche, die
den Gaußkrümmungsfluss erfüllt. E sei eine beliebige Ebene in der die Rotationsachse liegt.
In dieser Ebene verwenden wir Polarkoordinaten, wobei ϕ der Winkel zur Rotationsachse
sei. Aufgrund der Rotationssymmetrie lässt sich nun X als

X(ϕ, ϑ, t) = U(ϕ, t)

(
sin(ϕ)Y (ϑ)

cos(ϕ)

)
schreiben, wobei Y wo im letzten Abschnitt eine lokale Parametrisierung der Sphäre ist und
U : [0.π] → R+ eine geeignete von ϕ-abhängige Funktion ist, die den Abstand von X zum
Ursprung codiert. Als Anschauung dieser Wahl der Parametrisierung dient Abbildung 3.2.
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Abbildung 3.2: Veranschaulichung der Winkelparametrisierung

2. In dieser Parametrisierung erhalten wir die nachfolgenden ersten und zweiten Ableitungen
von X: (i, j ∈ ϑ1, ..., ϑn−1)

Xϕ(ϕ, ϑ, t) =U ′(ϕ, t)

(
sin(ϕ)Y (ϑ)

cos(ϕ)

)
+ U(ϕ, t)

(
cos(ϕ)Y (ϑ)
− sin(ϕ)

)
,

Xi(ϕ, ϑ, t) =U(ϕ, t)

(
sin(ϕ)Yi(ϑ)

0

)
,

Xij(ϕ, ϑ, t) =U(ϕ, t)

(
sin(ϕ)Yij(ϑ)

0

)
,

Xiϕ(ϕ, ϑ, t) =U ′(ϕ, t)

(
sin(ϕ)Yi(ϑ)

0

)
+ U(ϕ, t)

(
cos(ϕ)Yi(ϑ)

0

)
,

Xϕϕ(ϕ, ϑ, t) =(U ′′(ϕ, t)− U(ϕ, t))

(
sin(ϕ)Y (ϑ)

cos(ϕ)

)
+ 2U ′(ϕ, t)

(
cos(ϕ)Y (ϑ)
− sin(ϕ)

)
,

Ẋ(ϕ, ϑ, t) =U̇(ϕ, t)

(
sin(ϕ)Y (ϑ)

cos(ϕ)

)
.

Anhand der ersten Ableitungen lässt sich leicht die Metrik g ablesen:

g = (〈Xl, Xk〉)1≤k,l≤n =

(
U2 sin2(ϕ)(σij)1≤i,j≤n−1 0

0 U2 + U ′2

)
.

σ ist hier wie zuvor die Metrik auf der Einheitssphäre.

3. Ebenso leicht überzeugt man sich davon, dass

ν =
1√

U2 + U ′2

(
U

(
sin(ϕ)Y
cos(ϕ)

)
− U ′

(
cos(ϕ)Y
− sin(ϕ)

))
die äußere Normale ist. Mit denselben Argumenten wie in Bemerkung 3.1 in Abschnitt 3
erhält man den nachfolgenden Ausdruck für die zweite Fundamentalform:

A =
1√

U2 + U ′2

(
(U2 sin2(ϕ)− UU ′ sin(ϕ) cos(ϕ))(σij)1≤i,j≤n−1 0

0 U2 + 2U ′2 − UU ′′
)
.

4. Die Hauptkrümmungen sind somit

λϕ =
U2 + 2U ′2 − UU ′′
√
U2 + U ′2

3 λϑ =
1√

U2 + U ′2

(
1− cos(ϕ)

sin(ϕ)

U ′

U

)
.

Die Vielfachheit von λϑ ist erneut n− 1, sodass die Gaußkrümmung die Gestalt

K =

(
1− cos(ϕ)

sin(ϕ)

U ′

U

)n−1
(U2 + 2U ′2 − UU ′′)
√
U2 + U ′2

n+2
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hat.
Die Gleichung des Gaußkrümmungsflusses reduziert sich beim Einsetzen der bisherigen Re-
sultate zu

〈Ẋ, ν〉 =−K

⇔ U̇U√
U2 + U ′2

=−
(

1− cos(ϕ)

sin(ϕ)

U ′

U

)n−1
(U2 + 2U ′2 − UU ′′)
√
U2 + U ′2

n+2 (3)

5. Die Forderung, dass X homothetisch schrumpfend ist, lautet in der momentanen Parame-
trisierung

µ(t) {U(ϕ̃, t0)(sin(ϕ̃)Y (ϑ), cos(ϕ̃)) : ϕ̃ ∈ [0, π]} = {U(ϕ, t)(sin(ϕ)Y (ϑ), cos(ϕ)) : ϕ ∈ [0, π]} .

Wir definieren u(ϕ̃) := U(ϕ̃, t0) und schlussfolgern aus der Mengengleichheit, dass ϕ = ϕ̃
und U(ϕ, t) = µ(t)u(ϕ) gelten.
Damit sind die Ableitungen von U :

U ′(ϕ, t) =µ(t)u′(ϕ)

U ′′(ϕ, t) =µ(t)u′′(ϕ)

U̇(ϕ, t) =µ̇(t)u(ϕ).

6. Setzt man diese Ableitungen in Gleichung (3) ein ergibt sich

µ̇(t)
u(ϕ)2√

u(ϕ)2 + u′(ϕ)2
=
−1

µ(t)n

(
1− cos(ϕ)

sin(ϕ)

u′(ϕ)

u(ϕ)

)n−1
(u(ϕ)2 + 2u′(ϕ)2 − u(ϕ)u′′(ϕ))√

u(ϕ)2 + u′(ϕ)2
n+2

⇔ −µ̇(t)µ(t)n =

(
1− cos(ϕ)

sin(ϕ)

u′(ϕ)

u(ϕ)

)n−1
(u(ϕ)2 + 2u′(ϕ)2 − u(ϕ)u′′(ϕ))

u(ϕ)2
√
u(ϕ)2 + u′(ϕ)2

n+1 . (4)

Auch hier sind die rechte und linke Seite von jeweils verschiedenen Variablen abhängig,
woraus folgt, dass beide Seiten konstant sein müssen. Die Lösung von µ̇(t)µ(t)n = c ist aus
dem vorigen Abschnitt bekannt. Ferner folgern wir analog, dass ohne Einschränkung c = −1
gewählt werden kann.

7. Durch Gleichsetzen der rechten Seite von Gleichung (4) und Auflösen nach u′′(ϕ) bekommen
wir folgende gewöhnliche Differentialgleichung für u:

u′′(ϕ) = u(ϕ) +
2u′(ϕ)2

u(ϕ)
−
u(ϕ)

√
u(ϕ)2 + u′(ϕ)2

n+1(
1− cos(ϕ)

sin(ϕ)
u′(ϕ)
u(ϕ)

)n−1 . (??)

Gleichung (??) ist in ihrer Gestalt komplizierter als (?). Dafür lassen sich in dieser Parametri-
sierung die Kriterien, die wir von einem Fisch fordern besonders leicht ausdrücken. Die Bedingung,
dass Fische senkrecht von der Rotationsachse durchstoßen werden reduziert sich beispielsweise zu
u′(0) = 0 und u′(π) = 0.
Des Weiteren lässt sich in dieser Darstellung der Schnittwinkel ϑ(ϕ) von X mit einer Ursprungs-
geraden, die die Rotationsachse im Winkel ϕ schneidet, besonders leicht ausdrücken, da〈

Xϕ,

(
sin(ϕ)Y
cos(ϕ)

)〉
= |Xϕ| cos(ϑ(ϕ))

⇔ cos(ϑ(ϕ)) =
u′√

u′2 + u2
(5)
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Abbildung 3.3: Veranschaulichung der graphischen Parametrisierung senkrecht zur Rotationsachse

gilt.
Aufgrund der Singularität von cos(ϕ)

sin(ϕ) in (??) bei ϕ = 0 und ϕ = π erweisen sich jedoch
Aussagen zur Existenz von Lösungen an diesen Stellen als schwierig, weshalb wir hierzu noch eine
dritte gewöhnliche Differentialgleichung herleiten wollen.

Bemerkung 3.3. (Graphische Parametrisierung senkrecht zur Rotationsachse)
Die gewöhnliche Differentialgleichung, die in diesem Abschnitt hergleitet wird, wurde bereits zuvor
in [4] hergeleitet.

1. Die Herleitung in diesem Abschnitt verläuft exakt parallel zu der in 3.1. Wir wollen das
Koordinatensystem bei der Parametrisierung jedoch um 90◦ drehen, suchen also senkrecht
zur Rotationsachse r graphische homothetisch schrumpfende Lösungen der Gleichung des
Gaußkrümmungsflusses.
Sei dazu X wie in den Abschnitten zuvor eine rotationssymmetrische homothetisch schrump-
fende Lösung des Gaußkrümmungsflusses, Y erneut eine lokale Parametrisierung der (n−1)-
dimensionalen Einheitssphäre und W : R+

0 × [t0, T ]→ R so, dass

X(r, ϑ, t) = (W (r, t), rY (ϑ))

gilt. Eine Veranschaulichung dieser Parametrisierung findet sich in Abbildung 3.3.

2. Nun nehmen die ersten und zweiten Ableitungen nach r bzw. i, j ∈ {ϑ1, ..., ϑ2} folgende
Gestalt an:

Xr(r, ϑ, t) =

(
W ′(r, t)
Y (ϑ)

)
,

Xi(r, ϑ, t) =

(
0

rYi(ϑ)

)
,

Xij(r, ϑ, t) =

(
0

rYij(ϑ)

)
,

Xir(r, ϑ, t) =

(
0

Yi(ϑ)

)
,

Xrr(r, ϑ, t) =

(
W ′′(r, t)

0

)
,

Ẋ(r, ϑ, t) =

(
Ẇ (r, t)

0

)
.

Die Metrik g ist somit

g =

(
r2 (σij)1≤i,j≤n−1 0

0 1 +W ′2

)
.
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3. Man überprüft leicht, dass

ν =
1√

1 +W ′2
(1,−W ′Y )

die obere Normale ist und erhält damit analog zu Absatz 3 in Bemerkung 3.1, dass die zweite
Fundamentalform folgendermaßen aussieht:

A =
−1√

1 +W ′2

(
rW ′(σij)1≤i,j≤n−1 0

0 W ′′

)
.

4. Aus g und A lassen sich nun die Hauptkrümmungen ablesen:

λr =
−W ′′

√
1 +W ′2

3 λϑ =
1√

1 +W ′2
−W ′

r
.

Da λϑ mit (n− 1)-facher Vielfachheit vorkommt ist die Gaußkrümmung

K =
−W ′′

√
1 +W ′2

n+2

(
−W ′

r

)n−1
.

Damit wird 〈Ẋ, ν〉 = −K zu

Ẇ√
1 +W ′2

=
W ′′

√
1 +W ′2

n+2

(
−W ′

r

)n−1
. (6)

5. Die Forderung an X, homothetisch schrumpfend zu sein, formulieren wir erneut als Mengen-
gleichheit

µ(t)
{

(W (r̃, t0), r̃Y (ϑ)) : r̃ ∈ R+
0

}
=
{

(W (r, t), rY (ϑ)) : r ∈ R+
0

}
und folgern, dass r = µ(t)r̃ und W (r, t) = µ(t)W (r̃, t0) =: µ(t)w

(
r
µ(t)

)
.

Mit dieser Definition von w nehmen die Ableitungen von W folgende Form an:

W ′(r, t) =w′
(

r

µ(t)

)

W ′′(r, t) =
w′′
(

r
µ(t)

)
µ(t)

Ẇ (r, t) =µ̇(t)

(
w

(
r

µ(t)

)
− w′

(
r

µ(t)

)
r

µ(t)

)
.

6. Wir setzen diese in Gleichung (6) ein und erhalten nach der Substitution ρ = r
µ(t)

µ̇(t) (w(ρ)− ρw′(ρ))√
1 + w′(ρ)2

=
w′′(ρ)

µ(t)
√

1 + w′(ρ)2
n+2

(
−w′(ρ)

ρµ(t)

)n−1

⇔ µ̇(t)µ(t)n =
w′′(ρ)√

1 + w′(ρ)2
n+1

(
−w′(ρ)

ρ

)n−1
w(ρ)− ρw′(ρ)

. (7)

Aus der notwendigen Konstanz beider Seiten erhalten wir dieselbe Lösung für µ wie bereits
in den beiden vorangegangenen Bemerkungen und argumentieren analog, dass somit auch
die rechte Seite von Gleichung (7) gleich −1 sein muss. Den Fall w(ϕ)−ρw′(ϕ) = 0 haben wir
hier wieder implizit ausgeschlossen, da dieser Fall im Folgenden nur bei Ursprungsgeraden
auftreten wird, deren Rotationskörper den Gaußkrümmungsfluss bereits trivial erfüllen.
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7. Setzt man dies ein und löst nach w′′ auf erhalten wir wieder eine gewöhnliche Differential-
gleichung:

w′′(r) =
√

1 + w′(r)2
n+1

(
−r
w′(r)

)n−1
(rw′(r)− w(r)) . (? ? ?)

Mit der Gleichung (? ? ?) hat sich Sebastian Kümpel in [4] auseinandergesetzt und unter an-
derem die Existenz und Regularität von Lösungen nahe r = 0 bewiesen.

3.2 Äquivalenz der Gleichungen (?),(??) und (? ? ?)
In diesem Abschnitt werden wir zeigen, dass Lösungen von (?),(??) und (? ? ?) überall dort wo sie
existieren geometrisch äquivalent sind, also beispielsweise in den Hauptkrümmungen übereinstim-
men.

Lemma 3.4. Sei T > 0 und X : Ω× [ 0, T ) eine Lösung von 〈Ẋ, ν〉 = −K. Sei Ψ : Ω̂× [ 0, T ) → Ω
eine C2:1-Funktion so, dass Ψ(·, t) : Ω̂→ Ω für alle t ∈ [ 0, T ) ein C2-Diffeomorphismus ist. Dann
gilt für X̂(x, t) := X((Ψ(x, t), t))

〈 ˙̂
X, ν̂〉 = −K̂.

Mit ν̂, K̂, ĝ, Â, ... sind hier die zu X̂ gehörigen geometrischen Größen gemeint.
Es gilt ferner ν̂(x, t) = ν(Ψ(x, t), t) und λ̂i(x, t) = λi(Ψ(x, t), t) für i = 1, ..., n, was natürlich auch
dieselbe Gleichheit für K und K̂ impliziert.

Beweis: Es gilt

˙̂
X =

∂

∂t
X +XkΨ̇k

X̂i =XkΨk
i

X̂,ij =XkΨk
ij +X,klΨ

k
i Ψl

j .

Da ν überall normiert ist gilt dasselbe offenbar für ν̂. Ferner ist

〈ν̂(x, t), X̂i(x, t)〉 = 〈ν(Ψ(x, t), t), Xk(Ψ(x, t), t)〉Ψk
i (x, t) = 0.

Für die Metriken gilt

ĝij = X̂α
i δαβX̂

β
j = Ψk

iX
α
k δαβX

β
l Ψl

j = Ψk
i gklΨ

l
j .

Die zweite Fundamentalform transformiert sich analog:

ĥij =− X̂α
,ijδαβ ν̂

β = −Xα
k Ψk

ijδαβν
β −Xα

,klΨ
k
i Ψl

jδαβν
β

=−Ψk
ijX

α
k δαβν

β −Ψk
i

(
Xα
,klδαβν

β
)

Ψl
j = 0 + Ψk

i hklΨ
l
j .

Da Ψ ein Diffeomorphismus ist, ist(Ψi
j)1≤i,j≤n eine invertierbare Matrix. Aus dem Transforma-

tionsverhalten der Metrik und der zweiten Fundamentalform folgt hiermit, dass die Eigenwerte
der zweiten Fundamentalform bezüglich der Metrik übereinstimmen. Damit sind die Behaupteten
Eigenschaften von ν, λ1, ..., λn und K gezeigt.
Zuletzt gilt noch

〈 ˙̂
X, ν̂〉 =

∂

∂t
Xαδαβν

β + Ψ̇iXα
i δαβν

β = −K + 0 = −K̂.
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Die aus Lösungen von (?),(??) und (? ? ?) konstruierten Hyperflächen unterscheiden sich ledig-
lich in ihrer Parametrisierung, sodass es uns Lemma 3.4 erlauben wird einige der Aussagen von
den Gleichungen aufeinander zu übertragen.

Lemma 3.5. Sei h > 0. Existiert eine Lösung v von (?) mit −hv′(−h) − v(−h) < 0 auf
−h ≤ x < xmax und gilt dort v > 0, so ist v auf dem gesamten Existenzintervall strikt konkav.

Beweis: Wegen der Differentialgleichung gilt v′′(−h) < 0. Angenommen, es existiert ein x0 ∈ (−h, xmax)
mit v′′(x0) = 0. Dann folgt, da v > 0, dass v′(x0)x0−v(x0) = 0. In x0 stimmen also die Ableitung
von v und die der Ursprungsgeraden g durch (x0, v(x0)) überein. g ist jedoch selbst eine Lösung
von (?) , sodass aus der eindeutigen Lösbarkeit gewöhnlicher Differentialgleichungen g = v folgt.
Damit folgt −v′(−h)h− v(−h) = 0. Ein Widerspruch.

Lemma 3.6. Sei I := (a, b) ⊆ R+
0 und w eine Lösung von (? ? ?) auf I mit w′(a)a− w(a) < 0.

Dann gilt w′(x)x− w(x) < 0 für alle x ∈ I und w ist streng konkav.

Beweis: Mit Hilfe der Differentialgleichung (? ? ?) folgt der zweite Teil der Behauptung direkt
aus dem ersten. Dieser erste Teil folgt genauso wie die Aussage des vorangegangenen Lemma aus
der Eindeutigkeit von Lösungen gewöhnlicher Differentialgleichungen.

Lemma 3.7. 1. Sei v eine Lösung von (?) auf einem Existensintervall I ⊆ R mit v′(x) 6= 0
für alle x ∈ I, dann ist w := −v−1 (? ? ?).

2. Sei w eine Lösung von (? ? ?) auf einem Existensintervall I ⊆ R+
0 mit w′(x) < 0 für alle

x ∈ I, dann ist v := (−w)−1 eine Lösung von (?).
Mit (·)−1 ist hier stets die Umkehrfunktion gemeint.

Beweis: Ursprungsgeraden lösen sowohl (?) als auch (? ? ?). Sei daher v keine Ursprungsgerade.
Nach Lemma 3.5 ist daher daher v′′ 6= 0 in I . Da v graphisch ist, folgt w′ < 0. Nach dem Satz
von der Umkehrabbildung gilt:

w′ =
−1

v′
⇔ v′ =

−1

w′

w′′ =
v′′

v′3
⇔ v′′ =

w′′

(−w′)3

Einsetzen in (?) liefert

v′′ =
√

1 + v′2
n+1

vn−1(v′x− v)

⇔
x=−w,v=r

w′′
(
−1

w′

)3

=

√
1 +

1

w′2

n+1

rn−1
(
−1

w′
(−w)− r

)
⇔ w′′ =

√
1 + w′2

n+1
(

r

|w′|

)n−1
(w′r − w)

Da w′ < 0 ist, ist die letzte Zeile gerade (? ? ?).
Die andere Richtung funktioniert unter Anwendung von Lemma 3.6 durch Umkehrung der obigen
Rechenschritte.

Lemma 3.8. Sei v(x(ϕ)) := u(ϕ) sin(ϕ) und x(ϕ) = u(ϕ) cos(ϕ) so, dass v′x−v 6= 0⇔ u′ 6= ±∞
und v′ 6= ±∞⇔

(
1− cos(ϕ)

sin(ϕ)
u′

u

)
= 0. Dann gilt

v löst (?) ⇔ u löst (??).

Beweis: Wir rechnen die Behauptung nach. Zunächst gelten
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xϕ =uϕ cos(ϕ)− u sin(ϕ),

vϕ =uϕ sin(ϕ) + u cos(ϕ) = vxxϕ,

xϕϕ =uϕϕ cos(ϕ)− 2uϕ sin(ϕ)− u cos(ϕ),

vϕϕ =uϕϕ sin(ϕ) + 2uϕ cos(ϕ)− u sin(ϕ).

Es folgen

vx =
uϕ sin(ϕ) + u cos(ϕ)

xϕ
=
uϕ sin(ϕ) + u cos(ϕ)

uϕ cos(ϕ)− u sin(ϕ)
(8)

und

vxxx
2
ϕ =vϕϕ − vxxϕϕ

= (uϕϕ sin(ϕ) + 2uϕ cos(ϕ)− u sin(ϕ))

− uϕ sin(ϕ) + u cos(ϕ)

uϕ cos(ϕ)− u sin(ϕ)
(uϕϕ cos(ϕ)− 2uϕ sin(ϕ)− u cos(ϕ))

=
1

xϕ
[(uϕϕ sin(ϕ) + 2uϕ cos(ϕ)− u sin(ϕ))(uϕ cos(ϕ)− u sin(ϕ))

−(uϕ sin(ϕ) + u cos(ϕ))(uϕϕ cos(ϕ)− 2uϕ sin(ϕ)− u cos(ϕ))]

=
1

xϕ

[
−uϕϕu+ u2 + 2u2ϕ

]
.

Damit erhalten wir also

vxxx
3
ϕ = −uϕϕu+ u2 + 2u2ϕ.

Als nächstes rechnen wir den Term
√

1 + v′2v in eine praktischere Form um:

v2(1 + v′2) =u2 sin(ϕ)2 + u2 sin(ϕ)2
u2ϕ sin(ϕ)2 + 2uuϕ cos(ϕ) sin(ϕ) + u2 cos(ϕ)2

u2ϕ cos(ϕ)2 − 2uuϕ cos(ϕ) sin(ϕ) + u2 sin(ϕ)2

=
u2 sin(ϕ)2(u2ϕ cos(ϕ)2 + u2 sin(ϕ)2 + u2ϕ sin(ϕ)2 + u2 cos(ϕ)2)

u2ϕ cos(ϕ)2 − 2uuϕ cos(ϕ) sin(ϕ) + u2 sin(ϕ)2

=
u2 sin(ϕ)2(u2 + u2ϕ)

u2 sin(ϕ)2(1− cos(ϕ)
sin(ϕ)

uϕ

u )2
=


√
u2 + u2ϕ

1− cos(ϕ)
sin(ϕ)

uϕ

u

2

.

Wir zeigen noch

x2ϕ(1 + v2x) =(uϕ cos(ϕ)− u sin(ϕ))2 + (uϕ sin(ϕ) + u cos(ϕ))2

=u2 + u2ϕ

und

(vxx− v)xϕ =(uϕ sin(ϕ) + u cos(ϕ))u cos(ϕ)− (uϕ cos(ϕ)− u sin(ϕ))u sin(ϕ)

=u2.
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Setzen wir alles in (?) ein ergibt sich die Behauptung:

(?)⇔ vxx =
√

1 + v2x
n+1

vn−1(vxx− v)

⇔ −uϕϕu+ u2 + 2u2ϕ =
(√

1 + v2xv
)

︸ ︷︷ ︸
=

√
u2+u2

ϕ

1− cos(ϕ)
sin(ϕ)

uϕ
u

n−1
x2ϕ(1 + v2x)︸ ︷︷ ︸

=u2
ϕ+u2

(vxx− v)xϕ︸ ︷︷ ︸
=u2

⇔ uϕϕ =u+
2u2ϕ
u
−

u
√
u2 + u2ϕ

n+1

(
1− cos(ϕ)

sin(ϕ)
uϕ

u

)n−1 ⇔ (??).

4 Existenz homothetisch schrumpfender rot.sym. Fische
Lemma 4.1. Sei h > 0 Es gibt ein ε > 0 und eine Lösung w von (? ? ?), die auf [0, ε) existiert und
w(0) = h, w′(0) = 0 und w′(x) < 0 für alle x ∈ (0, ε) erfüllt. Ferner sind die Hauptkrümmungen
von der aus w konstruierbaren Hyperfläche X strikt positiv.

Beweis: Diese Aussage wird von Sebastian Kümpel in [4] gezeigt.

Nach Lemma 3.4 sind somit auch die Hauptkrümmungen von den zu entsprechenden Lösungen
von (?) und (??) gehörigen Flächen im Punkt (ε, w(ε)) streng positiv. Da w′(ε) < 0 gilt für eine
korrespondierende Lösung v von (?) v′(w(ε)) 6=∞. Damit sind die Lösungen in diesem Punkt für
(?) und (??) wohldefiniert und beide in einer Umgebung stetig. Nach Picard-Lindelöf existieren
also Lösungen v und u von (?) und (??) in einer Umgebung von besagtem Punkt. Wir setzen diese
durch w bis zur Rotationsachse fort.

Lemma 4.2. Es sei h > 0 und v eine Lösung von (??) mit v(−h) > 0, v′(−h) < ∞ und
−hv′(−h)− v(−h) < 0. Dann existiert v auf [−h, ε) für ein ε > 0 und es gilt dort v > 0.

Beweis: Sei I := [−h, xmax) das maximale Intervall auf dem v existiert und positiv ist. Dann
folgt aus Lemma 3.5, dass v dort streng konkav ist und daher sowohl v′(x) < v′(−h) < ∞ und
v(x) < v(−h) + v′(−h)(h + x) < ∞ für alle x ∈ I gelten. Falls v′ ≥ 0 gilt, sind wir fertig. Daher
gelte nun ohne Einschränkung v′(−h) < 0 und damit auch v′ < 0. Ferner gilt, dass die Ungleichung
v′(x)x− v(x) < 0 auf ganz I ihre Gültigkeit behält, da es sonst ein x ∈ I gäbe, in dem Gleichheit
gilt. Aufgrund der Eindeutigkeit von Lösungen gewöhnlicher Differentialgleichungen, wäre v daher
eine Ursprungsgerade. Ein Widerspruch.
Aus der Ungleichung folgt nun aber v′(x) > −∞ für alle x < 0 .
Sei f(x) := v(−h) − v(−h)

h (h + x). Dann gilt f(−h) = v(−h) und wegen v′(x)x − v(x) < 0 in I
außerdem f ′(−h) < v′(−h). Also inbesondere f 6= v auf einer Umgebung von −h.
Angenommen es gibt ein x0 ∈ (−h, 0) ∩ I mit v(x0) = f(x0). Ohne Einschränkung sei dieses x0
minimal mit dieser Eigenschaft. Dann muss v′(x0) ≤ f ′(x0) gelten. Wir erhalten also

v′(x0)x0 − v(x0) ≥ f ′(x0)x0 − f(x0) = 0.

Daher gibt es ein x1 ∈ (−h, x0) mit v′(x1)x1 − v(x1) = 0. Erneut ein Widerspruch.
Es gilt also xmax ≥ 0. Falls v(0) = 0 ist, so folgt aus (?) und der Eindeutigkeit von Lösungen, dass
v eine Ursprungsgerade ist. Falls |v′(0)| =∞ gilt, so betrachten wir die korrespondierende Lösung
w von ? ? ?, für die dann w′(v(0)) = 0 gilt. Ein Blick in (? ? ?) zeigt, dass auch hier mit Hilfe der
Eindeutigkeit von Lösungen folgt, dass w eine Ursprungsgerade ist. Beides steht im Widerspruch
zu den Voraussetzungen.

Bemerkung 4.3. Zusammen mit Lemma 4.1 und 3.4 folgt hieraus auch die Existenz von Lösungen
von (??) auf

[
0, π2 + ε

)
für ein ε > 0.
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Lemma 4.4. Sei h > 1 und w eine Lösung von (? ? ?) mit w(0) = h und w′(0) = 0. Dann ist w in
einer Umgebung der Rotationsachse im Inneren der Einheitssphäre, die lokal als g(r) =

√
1− r2+h−1

dargestellt werden kann.

Beweis: Nach Lemma 4.1 existiert der Grenzwert A := lim
r→0

−r
w′(r) und ist positiv. Mit dem Satz

von l’Hospital folgt durch Einsetzen in (? ? ?)

A = lim
r→0
−w′′(r) =

1

An−1w(0)

⇔ −w′′(0) = n

√
1

w(0)
> 1.

Da g(0) = h = w(0) und g′(0) = −0
g(0) = 0 = w′(0) gelten, aber g′′(0) = −1

g(03) = −1 ist, gilt
g′′(0) > w′′(0). Aufgrund der Stetigkeit gilt dies weiterhin auf einer Umgebung U der 0. Zwei-
maliges Anwenden des Vergleichsprinzips für gewöhnliche Differentialgleichungen liefert daher für
w(r) < g(r) für alle r ∈ U

Lemma 4.5. Sei h > 1 und u eine Lösung von (??) mit u(0) = h und u′(0) = 0. Ferner sei ϕ0

minimal mit u(ϕ0) = 1. Dann ist u′(x) < 0 für alle ϕ ∈ (0, ϕ0].

Beweis: Nach Lemma 4.4 gilt u′′(0) < 0 und damit u′ < 0 auf (0, ε) für ein hinreichend kleines
ε > 0.
Angenommen es gibt nun ein ϕ0 mit u′(ϕ0) = 0. Dann muss u′′(ϕ0) ≥ 0 gelten. Mit (??) gilt
weiter

u(ϕ0)− u(ϕ0)n+3 ≥ 0,

woraus u(ϕ0) ≤ 1 folgt. Gälte zusätzlich u′′(ϕ0) = 0, so wäre auch u(ϕ0) = 1. In diesem Fall
würde u in ϕ0 sowohl in der nullten als auch in der ersten Ableitung mit der Einheitssphäre um
die Null übereinstimmen. Da diese Sphäre, wie man leicht prüft, ebenfalls eine Lösung von (??) ist,
wäre u aufgrund der Eindeutigkeit von Lösungen mit dieser Sphäre identisch. Dies widerspräche
u(0) = h > 1. Damit sind beide vorangegangenen Ungleichungen strikt und die Behauptung
gezeigt.

Bemerkung 4.6. In den nachfolgenden Lemmata wird sich die folgenden Aussage einige Male
finden:

Sei v eine Lösung von (?) mit v(−h) = 0 und v′(−h) =∞.

Diese etwas laxe Formulierung ist wie folgt zu verstehen:
v löst (?) auf (−h, xmax), wobei xmax von der jeweiligen Situation abhängen wird, und es gibt eine
Lösung w von (? ? ?) mit w(0) = h und w′(0), sodass graph(v) und R90◦

(
graph(w)

)
in einer Um-

gebung des Punktes (−h, 0) identisch sind. R90◦ bewirke hier eine Rotation im Gegenuhrzeigersinn
um 90◦ um den Koordinatenursprung.

Lemma 4.7. Sei h ≥ 1 und sei v eine Lösung von (?) mit v(−h) = 0 und v′(−h) =∞. Ferner
sei vmax := max

t≤0
v(t) der Höchstwert, den v annimmt bevor x = 0. Dann gilt lim

h→∞
vmax = 0.

Beweis: Es sei V (x, t) die Lösung von Gleichung (1) mit V (x, t0) = v(x). X(x, ϑ, t) sei die aus V
konstruierte homothetisch schrumpfende rotationssymmetrische Lösung des Gaußkrümmungsflus-
ses und V ol(X), das durch X zwischen x = −h(t) und x = 0 eingeschlossene Volumen. −h(t) ≤ 0
ist hier der linke Schnittpunkt von X mit der Rotationsachse. Nach Lemma 4.2 ist dies der einzige
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Schnittpunkt kleiner Null.
Es gilt

|V ol| =
∫
V ol

dx = ωn

0∫
−h(t)

V (x, t)ndx.

Für die Zeitentwicklung von |V ol| ergibt sich daher

d

dt
V ol(X) =ωn

V (0, t)n0̇ + V (−h(t), t)n ˙h(t) +

0∫
−h(t)

nV̇ V n−1dx


Da −h(t) der Schnittpunkt mit der Rotationsachse ist und 0̇ = 0, sind die ersten beiden Terme
Null. Für c ∈ R sei yc(t) ≤ 0 maximal mit V ′(yc(t), t) = c und yc(t) = 0, falls kein x ≤ 0 die
Bedingung erfüllt. Aufgrund der Konkavität von v sind diese Punkte wohldefiniert.

Wir rechnen mit dem dritten Term weiter und erhalten nach Einsetzen von Gleichung (1)

ν̇ =ωnn

 y−1(t)∫
−h(t)

V ′′
√

1 + V ′2
n+1 dx+

y−1(t)∫
y1(t)

V ′′
√

1 + V ′2
n+1 dx+

0∫
y−1(t)

V ′′
√

1 + V ′2
n+1 dx

 .

Da X homothetisch schrumpfend ist, gilt d
dtV ol(X) < 0. Ferner gilt V ′′√

1+V ′2
n+1 ≥ V ′′

|V ′|n+1 und
V ′′√

1+V ′2
n+1 ≥ V ′′.

Es folgt

d

dt
V ol(X) ≥− ωnn

∣∣∣∣∣∣∣
y1(t)∫
−h(t)

V ′′

|V ′|n+1 dx

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
y−1(t)∫
y1(t)

V ′′dx

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
0∫

y−1(t)

V ′′

|V ′|n+1 dx

∣∣∣∣∣∣∣
≥− ωnn

∣∣∣∣∣
[
V ′−n

n

]y1(t)
−h(t)

∣∣∣∣∣− ωnn ∣∣∣[V ′]y−1

y1

∣∣∣− ωnn
∣∣∣∣∣
[
V ′−n

n

]0
y−1

∣∣∣∣∣
≥− ωn − 2nωn − ωn ≥ −2ωn(n+ 1).

Wirft man einen Blick auf die Zeitentwicklung von X, die maßgeblich durch das in der Herleitung
von (?) definierte µ bestimmt wird, stellt man fest, dass es einen Zeitpunkt tfin < ∞ gibt bei
dem ν(tfin) = 0 gilt.
Da v beschränkt ist, ist auch t0 − tfin <∞ und es folgt

V ol(X) ≤ V ol(X)

∣∣∣∣
t=t0

≤ 2ωn(n+ 1) (t0 − tfin) <∞.

Sei −xmax ≤ 0 der eindeutige Punkt, in dem v seinen Maximalwert vmax links von x = 0
annimmt. Z1 sei der (n + 1)-dimensionale Kegel der Länge h − xmax und Radius vmax. Z2 sei
der (n + 1)-dimensionale Kegel der Länge xmax und Radius vmax. Aufgrund der Konkavität

von v passen beide Zylinder in V ol(x)

∣∣∣∣
t=t0

. Eine Veranschaulichung, wie diese beiden Zylinder

in V ol(X) platziert sind, ist in Abbildung 4.1 zu sehen. Das Gesamtvolumen beider Zylinder
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Abbildung 4.1: Qualitative Darstellung der Einbettung der Zylinder Z1/2 in das Volumen ν

VZ = ωn

n v
n
max(h− xmax) + ωn

n v
n
maxxmax erfüllt also

VZ =
ωn
n
vnmaxh ≤ 2ωn(n+ 1) (tmax − t0)

⇔ vmax ≤
n

√
2n(n+ 1)

h
(tmax − t0) ≤ 4

n
√
h

n
√

(tmax − t0).

tmax sei hier die Zeit, zu der sich V ol zu einem Punkt zusammengezogen hat. Das letzte ≤-Zeichen
folgt hier aufgrund der Tatsache, dass fn = n

√
2n(n+1)

h eine monoton in n fallende Folge ist und für
f1 = 4

n√
h
gilt. Der Beweis der Monotonie dieser Folge ist nicht ganz trivial und bedarf noch einer

kleinen Überlegung, auf deren Ausführung wir an dieser Stelle jedoch verzichten möchten.

Lemma 4.8. Sei ε = 1
2n+310n < 1, ϕ ∈ (120◦, 150◦) und gϕ die Ursprungsgerade, die die Rotati-

onsachse im Winkel ϕ schneidet. Dann existiert ein h > 1 und ein v, welches gϕ in einem Winkel
kleiner als 60◦ schneidet. Dieses v löst (?) auf [−h, ε) und erfüllt v(−h) = 0 und v′(−h) =∞.

Beweis: Sei v eine Lösung von ? mit v(−h) = 0 und v′(−h) =∞. h lassen wir zunächst beliebig.
Nach Lemma 4.7 gilt v(−ε) ≤ 4

n√
h
. Angenommen v′(−ε) ≥ 0. Dann folgt aufgrund der Konkavität

von v für hinreichend großes h, dass v′(−ε) ≤ v′(−h+ 1) ≤ 4
n√
h
· 1, wobei die zweite Ungleichung

gelten muss, da v sonst seinen Maximalwert überschreiten würde.
Angenommen v′(−ε) < 0. Dann folgt wegen v′x− v < 0, dass |v′(−ε)| ≤ 4

n√
hε

gelten muss.
Daher existiert zu δ � 0.1 ein h > 1 so, dass v(−ε) < δ und |v′(−ε)| < δ gelten.
Wir nehmen an, dass v(x), |v′(x)| ≤ 10δ für alle x ∈ [−ε, ε]. Dann gilt

|v′′(x)| ≤
√

1 + 100δ2
n+1

(10δ)
n−1

(10εδ + 10δ) ≤ 2n+210nδn.

Woraus wir schließen, dass
|v′(ε)| ≤ δ + 2n+210nδn(2ε) ≤ 2δ

sein muss. Folglich wächst auch v(ε) nicht über 10δ, was die entsprechende Annahme rechtfertigt.
Für hinreichend große h ist v in der Umgebung von x = 0 also beinahe eine Ursprungsgerade mit
Steigung 0. Für δ � ε gilt dies insbesondere bis zum Schnittpunkt mit gϕ. Folglich schneidet sie
alle gϕ in einem Winkel spitzer als 60◦.
Der letzte Argumentationsschritt wird in Abbildunge 4.2 nochmals verdeutlicht.

Korollar 4.9. Sei ϕ1 ∈ (120◦, 121◦) und h1 > 1 und gϕ wie eben. Dann exisiteren ein h2 > h1,
ϕ2 ∈ (119◦, 121◦) und eine Lösung v von ? mit v(−h2) = 0 und v′(−h2) = ∞, die gϕ2

im 60◦-
Winkel schneidet.
Ferner gilt, der Abstand des Schnittpunkts von v und gϕ2 zum Ursprung ist kleiner als 0, 5.
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Abbildung 4.2: Veranschaulichung zum Beweis von Lemma 4.8

Beweis: Im Beweis von Lemma 4.8 ist inbesondere zu sehen, dass für δ → 0 auch mindestens eine
Teilfolge der zugehörigen h nach unendlich divergiert. Wir verkleinern also zunächst δ so, dass wir
ein dazu passendes h2 > h1 wählen können. Da sich das zugehörige v auf ϕ ∈ [90◦121◦] mehr und
mehr einer Geraden parallel zur Rotationsachse annähert, wenn δ verkleinert wird, können wir
δ, falls nötig, weiter verkleinern, bis v die Ursprungsgerade g119◦ in einem Winkel größer als 60◦

schneidet, während die Ursprungsgerade gϕ1
in einem Winkel kleiner als 60◦ geschnitten wird.

Abschließend können wir δ, erneut falls nötig, noch weiter verkleinern um sup
ϕ∈(119◦,ϕ1)

v(xs(ϕ)) < 0, 5

zu gewährleisten, ohne die bisher konstruierten Eigenschaften zu verlieren. (xs(ϕ), v(xs(ϕ)) sei hier
der Schnittpunkt von v und gϕ.
Falls wir noch zeigen können, dass der Schnittwinkel von v und gϕ stetig in ϕ ist, folgt die Be-
hauptung.
Für den Fall, dass sich v und gϕ im Punkt (xs, v(xs)) schneiden kann ihr Schnittwinkel ϑ(ϕ) an
der Formel 〈(

1
v′(xs)

)
,

(
1

g′(xs)

)〉
=

∣∣∣∣ ( 1
v′(xs)

) ∣∣∣∣∣∣∣∣ ( 1
g′(xs)

) ∣∣∣∣ cos(ϑ(ϕ))

abgelesen werden. Wenn xs stetig in ϕ ist, folgt dasselbe also für ϑ(ϕ) als Kompsition stetiger
Abbildungen.
xs erfüllt die Gleichung

F (ϕ, xs) := aϕxs − v(xs) = 0,

wobei aϕx = gϕ(x) ist. Aus dem Beweis der Konkavität von v wissen wir, dass v nie parallel zu
einer Ursprungsgeraden sein kann und daher Fx(ϕ, xs) = aϕ − v′(xs) 6= 0 gilt.
Der Satz von der impliziten Funktion liefert nun, dass xs lokal eine stetige Funktion von ϕ ist.
Da v konkav ist, existiert für jedes ϕ höchstens ein solcher Schnittpunkt. Da ϕ beliebig war, folgt
damit, dass xs auch global stetig in ϕ ist.
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Lemma 4.10. Sei x ∈ S1 und y ∈ R2 \B1 so, dass y1 < x1 < 0 und x2 = y2 > 0. Dann gilt

〈x, y〉 > 1.

Beweis:
〈x, y〉 = x1y1 + x2y2 = |x1||y1|+ x22 > x21 + x22 = 1

Lemma 4.11. Sei h > 1 und v eine Lösung von (?) mit v(−h) = 0 und v′(−h) = ∞. Dann
existiert ein x0 < 0 mit x20 + v(x0)2 = 1 und es gilt v(x) ≤ 1 für alle x ∈ [−h, x0].

Beweis: Nach Lemma 4.2 existiert v bis einschließlich x = 0. Es genügt also zu zeigen, dass v bis
zur S1 kleiner als 1 bleibt.
Wir definieren g(x) :=

√
1− x2. g ist kleiner als 1 und erfüllt g′(x) = −x

g(x) und g′′(x) = −1
g(x)3 .

Als nächstes definieren wir für x ∈ (−h, 0) yx so, dass g′(yx) = v′(x) und die Translation Tx so, dass
Txx = yx. Dann ist gx0

:= g(Tx0x) gerade der Graph derjenigen Einheitssphäre mit Mittelpunkt
auf der Rotationsachse, deren Ableitung im Punkt x0 mit v′(x0) übereinstimmt.
Aus Lemma 4.4 wissen wirn nach einer Drehung des Koordinatensystems um 90◦, dass es ein ε > 0
gibt, sodass v(x) < g−h(x), v′(x) < g′−h(x) und v′′(x) < g′′−h(x) für alle x ∈ (−h,−h+ ε) gelten.
Ohne Einschränkung wählen wir ε so klein, dass auf diesem Intervall auch v′ > 0 gilt.
Da auf diesem Intervall 0 < g′x(x) = v′(x) < g′−h(x) gilt, folgt 0 > yx > 1 + (h − |x|) = y−h und
damit g(yx) > g(y−h).
Mit v(x) ≤ g−h(x) liefert dies zusätzlich v(x) < gx(x) für alle x ∈ (−h,−h+ ε).
Da g ≤ 1 sind wir fertig, falls diese Ungleichung für alle x ∈ (−h, 0) erhalten bleibt.
Um dies zu zeigen nehmen wir an, es gäbe ein x0 ∈ (−h, 0), bei dem gx0

(x0) = v(x0) gilt. Außerdem
wollen wir zunächst den Fall v′(x0) ≥ 0 betrachten.
Nach Konstruktion gilt v(x0) = gx0

(x0) = g(yx0
) und v′(x0) = g′x0

(x0) = g′(yx0
).

Setzen wir dies in (??) ein, so erhalten wir

v′′(x0) =
√

1 + g′(yx0)2
n+1

g(yx0)n−1 (x0g
′(yx0)− v(x0))

=

√
1− y2x0

+ y2x0

1− y2x0

n+1

g(yx0)n−1
(
x0
−yx0

g(yx0)
− v(x0)

)

=

√
1

g(yx0)2

n+1

g(yx0)n−1
−1

g(yx0)

〈(
x0
v(x0)

)
,

(
yx0

g(yx0)

)〉
=
−1

g(yx0
)3

〈(
x0
v(x0)

)
,

(
yx0

g(yx0
)

)〉
<

−1

g(yx0
)3

= g′′(yx0
) = g′′x0

(x0).

Falls x0 < yx0 folgt die Ungleichung in der vorangegangenen Rechnung aus Lemma 4.10. Falls
x0 ≥ yx0

gilt, gilt auch x20 + v(x0)2 ≤ 1 und wir sind ebenfalls fertig.
Somit wissen wir also, dass v′′(x0) ≤ g′′x0

(x0). Aus Stetigkeitsgründen gilt damit auch v′′(x) ≤ g′′x0
(x)

für alle x ∈ [x0, x0 + ε) für ein ε > 0. Durch das Vergleichsprinzip folgt weiter, dass v(x) ≤ gx0
(x)

und v′(x) ≤ g′x0
(x) für alle x ∈ [x0, x0 + ε) gelten. Da wir angenommen haben, dass v′(x0) ≥ 0

ist, schlussfolgern wir genau wie in der Umgebung von −h, dass sogar v(x) ≤ gx(x) für alle
x ∈ [x0, x0 + ε) gilt.
Damit haben wir gezeigt, solange v′ ≥ 0 gilt, wird v gx höchstens von innen berühren. Dort gilt
also v(x) ≤ gx(x) ≤ 1.
Da v konkav ist, genügt dies, da v′ lediglich einen einzigen Vorzeichenwechsel vollzieht.

Bemerkung 4.12. Alle bisher gezeigten Aussagen, waren unabhängig von der Dimension n der
Fische deren Existenz wir zu zeigen versuchen.
Die Verallgemeinerung der ab hier vorgestellten Aussagen auf n > 1 ist uns jedoch nicht gelungen,
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weshalb wir an dieser Stelle darauf hinweisen, dass nachfolgende Lemmata nur für den übrigen
Fall n = 1 Gültigkeit haben.
Für n = 1 wird (??) zu

u′′(ϕ) = u(ϕ) +
2u′(ϕ)2

u(ϕ)
− u(ϕ)

(
u(ϕ)2 + u′(ϕ)2

)
. (4?)

Lemma 4.13. Sei n = 1 und u eine Lösung von (4?). Dann liegt zwischen einem Minimum und
einem Maximum von u stehts ein Abstand von mindestens 90◦ und weniger als 128◦.

Beweis: Aus den Ergebnissen in [5] oder [6] folgt, dass der Abstand d zwischen einem Maximum
und Minimum von u im Intervall

(
π
2 ,

π√
2

)
liegt. Wegen π

2 =̂90◦ und π√
2
≈̂173.3◦ folgt die Behaup-

tung.

Lemma 4.14. Sei n = 1 und u eine Lösung von (4?) auf [ϕ0, ϕ1]. Dann ist ũ, die Spiegelung
von u an ϕ1, mit ũ(ϕ1 + ϕ0) = u(ϕ1 − ϕ) eine Lösung von (4?) auf [ϕ1, 2ϕ1 − ϕ0].

Beweis: Die Aussage folgt direkt aus der Autonomie von (4?) und der Invarianz von (4?) unter
der Ersetzung von ϕ durch −ϕ.

Lemma 4.15. Sei n = 1 und h > 1. u sei eine Lösung von (??) mit u(0) = h, u′(0) = 0 und
maximalem Existenzintervall Imax. Dann gilt Imax = R.

Beweis: Wir wissen bereits, dass u bis mindestens ϕ = 90◦ existiert und in einer Umgebung der
0 streng monoton fallend ist. Folglich hat u in ϕ = 0 ein Maximum. Wenn wir zeigen können,
dass u bis zu einem Minimum existiert, folgt der Rest der Behauptung aus 4.14. Dieses Lemma
liefert, dass man u in seinem Minimum durch eine an ϕ = ϕ0 gespiegelte Version von u fortsetzen
kann. Wiederholt man dieses Verfahren in allen folgenden Maxima und Minima erhält man eine
periodische Lösung ũ von 4?, die auf ganz R definiert ist. Aufgrund der Eindeutigkeit von Lösungen
ist u = ũ.
Wir wissen nach Lemma 4.2, dass u bis mindestens ϕ = 90◦ existiert und aus Lemma 4.11, dass
u in einem Winkel ϕ0 ≤ 90◦ die Einheitskugel um den Ursprung durchstößt.
Sei ϕ1 ∈ (90◦, 128◦) der Winkel, in dem u ein Minimum annimmt oder aber das Supremum von
Imax. Mit Lemma 4.13 folgt, dass u(ϕ) ≤ 1 und u′(ϕ) ≤ 0 für alle ϕ ∈ (ϕ0, ϕ1) gelten muss. Damit
haben u und u′ eine obere Schranke.
Da auf diesem Intervall u ≤ 1 gilt, gilt nach (4?)

u′′ = u+
2u′2

u
− u(u2 + u′2) > 0.

Damit hat u′ mit u′(ϕ0) eine untere Schranke. Es bleibt u > 0 auf (ϕ0, ϕ1) zu zeigen.
Dazu definieren wir −c := u′

u (ϕ0) ≤ 0 und betrachten die Differentialgleichung zu u′

u , die sich aus
(??) ergibt zu (

u′

u

)′
=
u′′

u
− u′2

u2
= 1 +

(
u′

u

)2

− u2
(

1 +

(
u′

u

)2
)
.

Da u < 1 gilt, ist somit
(
u′

u

)′
> 0. Weiter erhalten wir hieraus u′

u ≥ −c, also

|u′| ≤ cu.

Mit dem Vergleichsprinzip für gewöhnliche Differentialgleichungen folgt, dass u auf I höchstens
exponentiell abfallen kann und daher positiv bleibt.
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Lemma 4.16. Sei h∗ > 1 und für h ∈ (1, h∗) sei uh die Lösung von (??) mit u(0) = h und
u′(0) = 0. Dann ist die Abbildung (h, ϕ) 7→ uh(ϕ) auf (1, h∗)× R stetig differenzierbar.

Beweis: Da uh Lösung von (??) ist erfüllt es
u′′h(ϕ) = uh(ϕ) +

2u′h(ϕ)
2

uh(ϕ)
− uh(ϕ)3 − uh(ϕ)u′h(ϕ)2 =: F (h, ϕ, uh(ϕ), u′h(ϕ))

uh(0) = h
u′h(0) = 0

Nach Theorem 8.17 und 8.18 in [2] genügt es zu zeigen, dass F,DF,D2F und D3F gleichmäßig
Lipschitzstetig sind, um die Bahauptung zu beweisen. Da sämtliche Ableitungen von F Polynome
in uh, u′h und 1

uh
sind, reicht es dazu weiter zu zeigen, dass uh und u′h gleichmäßig beschränkt sind

und inf
(h,ϕ)∈(1,h∗)×R

uh(ϕ) > 0 gilt.

Da wir bereits gesehen haben, dass die Lösungen uh periodisch mit einer Periode kleiner als 180◦

sind, reicht es dies für ϕ ∈ [0, 180◦] zu zeigen.
Sei zunächst ϕ ∈ (0, 45◦). Wir wissen aus Lemma 4.2, dass uh in diesem Intervall nie parallel
zur Ursprungsgeraden mit ϕ = 90◦ verläuft. An Gleichung (8) sehen wir, dass hieraus folgt, dass
sin(ϕ)u(ϕ)− cos(ϕ)u′(ϕ) > 0 ist.
Einige leichte Umformungen zeigen, dass für ϕ ∈ (0◦, 45◦)

−u′h(ϕ) = |u′h(ϕ)| ≤ tan(ϕ)uh(ϕ) ≤ tan(45◦)uh(ϕ). (9)

Da uh auf diesem Intervall noch monoton fallend ist, folgt u′h(ϕ) ∈ [0,− tan(45◦)h] für alle
ϕ ∈ [0, 45◦]. h kann natürlich weiter durch h∗ abgeschätzt werden.
Da wir in Lemma 4.11 gesehen haben, dass der Abstand zu Rotationsachse stets kleiner als 1 ist,
können wir folgern, dass für ϕ ∈ [45◦, 90◦] uh(ϕ) <

√
2 gelten muss. Damit ist in diesem Intervall

2
uh(ϕ)

− uh(ϕ) > 0 und wir können u′′h wie folgt abschätzen:

u′′h(ϕ) ≥ uh(ϕ)− uh(ϕ)3 ≥ −
√

2
3
.

Integration liefert nun, dass

c := sup
(h,ϕ)∈(1,h∗)×[0◦,90◦]

|u′h(ϕ)| ≤ tan(45◦)h∗ +
√

2
3
· π

4
.

Aus 4.11 ist weiter ersichtlich, dass es ein ϕh ∈ (0◦, 90◦) gibt in dem uh(ϕh) = 1 gilt. Aufgrund
der Monontonie von uh bis zum Minimum bei ϕ0,h > 90◦, bleibt uh zunächst kleiner 1. An (??)
sieht man nun, dass u′′h > 0 auf (ϕh, ϕ0,h) gilt. Folglich hat u′h auf (0◦, 90◦) bereits sein Minimum
angenommen, welches wir durch −c abschätzen können. Da Lösungen von (??) in ihrem Minima
und Maxima schlicht gespiegelt werden, ist c bereits eine Schranke für das betragsmäßige Maximum
von u′h(ϕ) auf R.
Damit ist u′h(ϕ) auf (1, h∗)× R also gleichmäßig durch ±c beschränkt.
Aufgrund der Monotonie von uh zwischen Maximum und Minimum und der Periodizität ist uh
nach oben durch h < h∗ beschränkt.
Im Beweis von Lemma 4.15 haben wir außerdem gesehen, dass |u′| ≥ u′(ϕh)u für alle ϕ ∈ [ϕh, ϕ0,h]

gilt und erhalten somit mit dem Vergleichsprinzip uh(ϕ) ≥ eu′h(ϕh)(ϕ−ϕh) für alle ϕ ∈ [ϕh, ϕ0,h]. Da
uh sein Minimum in diesem Intervall annimmt, sind wir fertig, wenn wir diesen Term gleichmäßig
gegen ein q > 0 abschätzen.
Um dies zu tun schätzen wir u′h(ϕs) durch −c und ϕ− ϕh durch π ab.
Damit sind alle Ableitungen von F gleichmäßig beschränkt und damit F und seine Ableitungen
gleichmäßig Lipschitz-stetig.

Lemma 4.17. Sei h > 1 und u eine Lösung von (4?) mit u(0) = h und u′(0) = 0. u nehme
in ϕ0 ∈ (90◦, 128◦) sein Minimum an. Weiter sei ϕ1 > ϕ0 minimal mit u(ϕ1) = 1. Dann ist der
Schnittwinkel ϑ(ϕ) von u(ϕ) mit der Ursprungsgeraden gϕ in (ϕ0, ϕ1) streng monoton wachsend.
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Beweis: ϑh(ϕ) sei der Schnittwinkel von uh mit der Ursprungsgeraden unter dem Winkel ϕ. Dann
ist ϑh(ϕ0) = 90◦ und nach Gleichung (5)

cos(ϑh) =
u′h√

u2h + u′2h
.

Leiten wir dies nach ϕ ab und benutzen wir Gleichung (??) (n = 1), so erhalten wir

(cos(ϑh(ϕ)))
′

=
u2hu

′′
h − uhu′2h

(u2h + u′2h )
3/2

=

[
u2h

(
uh +

2u′2h
uh
− uh(u2h + u′2h )

)
− uhu′2h

]
1

(u2h + u′2h )3/2

=

(
u2h + u′2h

) (
uh − u3h

)
(u2h + u′2h )3/2

=

(
uh − u3h

)√
u2h + u′2h

.

Solange u < 1 ist, ist diese Ableitung streng positiv, was bedeutet, dass die Ableitung von ϑh
streng negativ ist.

Bemerkung 4.18. Um mit Hilfe der bisher gezeigten Aussagen 1.1 zu beweisen, wollen wir im
folgenden den Spiegelungswinkel ϕh und die Fischfunktion fh definieren.

Dazu sei für h > 1 uh die Lösung von (??) mit uh(0) = h und u′h(0) = 0. ϕh sei für h > 1 der
keinste Winkel aus (90◦, 180◦) der eine der folgenden Eigenschaften hat:

1. uh(ϕh) = 1

2. u′h(ϕh) = uh(ϕh)√
3

, was gleichbedeutend damit ist, dass uh die Ursprungsgerade mit Winkel
ϕh im 60◦-Winkel schneidet.

3. ϕh = 179◦ .

ũh sei die Lösung von (??) mit ũh(ϕh) = uh(ϕh) und ũ′h(ϕh) = −u′h(ϕh).

Hierauf basierend definieren wir nun die folgende Funktion :

fh(ϕ) =

{
uh(ϕ) für ϕ ≤ ϕh
ũh(ϕ) für ϕ > ϕh

Wir werden als nächstes zeigen, dass f ′h(180◦) stetig von h abhängt, dass es ein h∗ gibt, für welches
f ′h∗(180◦) = 0 gilt und, dass uh∗ und ũh∗ in ϕh∗ die 120◦-Bedingung erfüllen. Ist all dies erfüllt,
so ist fh∗ ein Netzwerk, aus dem durch Spiegelung ein Fisch konstruiert werden kann.

Lemma 4.19. Seien A = Ā ⊆ B und f, g : B → R so, dass f auf B stetig ist. g sei auf A
ebenfalls stetig und es gelte f(x) < g(x) für alle x ∈ B \A und f(x) ≤ g(x) für alle x ∈ ∂A. Dann
ist m : B → R mit x 7→ min(f(x), g(x)) stetig.

Beweis: Sei C ⊆ R abgeschlossen. Dann ist das Urbild von C unter m gegeben durch

m−1(C) = {x ∈ B : (f(x) ∈ C ∧ f(x) ≤ g(x)) ∨ (g(x) ∈ C ∧ g(x) ≤ f(x))}
= ({x ∈ B : f(x) ∈ C} ∩ {x ∈ B : f(x) ≤ g(x)})
∪ ({x ∈ B : g(x) ∈ C} ∩ {x ∈ B : g(x) ≤ f(x)}︸ ︷︷ ︸

⊆A

)

= ({x ∈ B : f(x) ∈ C} ∩ {x ∈ B : f(x) ≤ g(x)})
∪ ({x ∈ A : g(x) ∈ C} ∩ {x ∈ B : g(x) ≤ f(x)}).

Wir zeigen, das diese vier Mengen jeweils abgeschlossen sind, sodass dasselbe auch für m−1(C)
gilt.
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{x ∈ B : f(x) ∈ C} = f−1(C) ist als Urbildmenge einer stetigen Funktion abgeschlossen.

Für die zweite Menge gilt {x ∈ B : f(x) ≤ g(x)} = B\
◦
A∪{x ∈ A : f(x) ≤ g(x)}. Die Menge B\

◦
A

ist als Komplement der offenen Menge
◦
A in B abgeschlossen und {x ∈ A : f(x) ≤ g(x)} ist in A,

und daher auch in B, abgeschlossen, da f und g auf A stetig sind.
{x ∈ A : g(x) ∈ C} ist gerade die Urbildmenge von C unter g|A. Da g auf A stetig ist, ist sie in A
und damit auch in B abgeschlossen.
Weiter gilt, da {x ∈ B : g(x) ≤ f(x)} ⊆ A ist und f und g dort stetig sind, dass diese Menge
abgeschlossen in der Spurtopologie bezüglich A und folglich auch in der Topologie von B ist.

Lemma 4.20. Sei

W := {h > 1 : ∃ϕ =: ϕ60◦(h) mit ϑh(ϕ60◦(h)) = 60◦, ϕ60◦(h) ∈ (90◦, 180◦) und uh(ϕ60◦(h)) < 1 }

Dann lässt sich W 3 h 7→ ϕ60◦(h) stetig auf W fortsetzen. Auf W gilt ϑh(ϕ60◦(h)) = 60◦ und für
alle h ∈ ∂W gilt uh(ϕ60◦(h)) = 1 oder ϕ60◦(h) = 180◦.

Beweis: Wir zeigen diese Aussage in mehreren Schritten.

1. Seien (hk)k∈N, h0 > 1 mit hk → h0 für k → ∞ Im Beweis von Lemma 4.16 haben wir
gesehen, dass uhk

(ϕ) punktweise gegen uh0
(ϕ) konvergiert und, dass für alle h aus einem

beschränkten Intervall u′h(ϕ) gleichmäßig beschränkt und uh(ϕ) gleichmäßig beschränkt und
echt größer Null ist. Ein Blick in (4?) zeigt, dass damit auch u′′h gleichmäßig beschränkt ist.

Es folgen uhk
⇒ uh0

, u′hk
⇒ u′h0

und
u′hk

uhk

⇒
u′h0

uh0
für k →∞. Aufgrund der Periodizizäz von

Lösungen von (4?) gilt dies für alle ϕ.

2. Als nächstes zeigen wir, dass ϕ60◦(h) auf W stetig ist. Dazu betrachten wir die ϕ60◦(h)-
definierende Gleichung

F (h, ϕ60◦(h)) = ϑh(ϕ)− 60◦ = 0. (10)

Ableiten nach ϕ60◦(h) liefert

Fϕ(h, ϕ) = ϑ′h(ϕ)

Wir wissen aus Lemma 4.17, dass ϑ′h(ϕ) 6= 0 für alle h mit uh(ϕ60◦(h)) < 1, also insbesonde-
re für alle h ∈W gilt. Damit folgt mit dem Satz von der implitziten Funktion, dass ϕ60◦(h)
lokal stetig in W ist. Da ϑh(ϕ) monoton in ϕ ist, solange uh(ϕ) < 1 ist und da für jedes
andere Intervall [a, b] in dem uh kleiner 1 ist [a, b]∩ [90◦, 180◦] = ∅ gilt, ist ϕ60◦(h) für jedes
h ∈W eindeutig bestimmt, sodass sogar bereits Stetigkeit in ganz W folgt.

3. Nun zeigen wir, dass W offen ist.
Sei dazu h0 ∈W .

Da uh0
stetig ist und uh0

(ϕ60◦(h0)) < 1, existieren ζ > 0 und ε > 0 so, dass
uh0

((ϕ60◦(h0)− ε, ϕ60◦(h0) + ε)) ⊆ (2ζ, 1− 2ζ) gilt.
Aufgrund der stetigen Abhängigkeit von Anfangswert von uh existiert weiter ein δ > 0,
sodass für alle h ∈ (h0 − δ, h0 + δ) uh((ϕ60◦(h0)− ε, ϕ60◦(h0) + ε)) ⊆ (ζ, 1− ζ) gilt.
Somit ist nach Lemma 4.17 ϑ′h(ϕ) 6= 0 für alle
(ϕ, h) ∈ (ϕ60◦(h0)− ε, ϕ60◦(h0) + ε)× (h0 − δ, h0 + δ) .
Der Satz von der impliziten Funktion liefert analog zum Vorgehen in 2. die Existenz eines
0 < η ≤ δ so, dass für alle h ∈ (h0 − η, h0 + η) ein stetiges ϕ̃(h) mit ϑh(ϕ̃(h)) = 60◦

und ϕ̃(h0) = ϕ60◦(h0) existiert. Da ϕ̃(h) stetig ist, kann ein κ so gewählt werden, dass
ϕ̃(h) ∈ (ϕ60◦(h0)− ε, ϕ60◦(h0) + ε) für alle h ∈ (h0 − κ, h0 + κ) gilt.
Damit ist gezeigt, dass W offen ist.
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4. Angenommen ϕ60◦(h) kann stetig aufW fortgesetzt werden. Dann impliziert 1., dass für alle
h ∈ W die Bedingung uh(ϕ60◦(h)) ≤ 1 gilt. Da ϑh(ϕ) = 60◦ äquivalent ist zu u′h(ϕ)

uh(ϕ)
=
√

3

folgt aus 1. weiter, dass für alle h ∈W auch ϑhϕ60◦(h) = 60◦ gilt.

DaW offen ist, muss h ∈W \W = ∂W dann ϕ60◦(h) ∈ {90◦, 180◦} oder uh(ϕ60◦(h)) = 1 er-
füllen. ϕ60◦(h) = 90◦ kann ausgeschlossen werden, da für alle h > 1 die Aussage u′h(90◦) < 0

gilt und daher u′h(90
◦)

uh(90◦)
6=
√

3 gilt.
Es bleibt also zu zeigen, dass ϕ60◦(h) stetig auf W fortgesetzt werden kann.

5. Sei h0 ∈ ∂W undW ⊇ (hk)k∈N ein Folge, die nach h0 konvergiert. Da ϕ60◦(hk) für alle k ∈ N
beschränkt bleibt existiert eine konvergente Teilfolge, die wir ohne Einschränkung auch mit
(hk)k∈N bezeichnen. Gelte ϕ60◦(hk) → ϕ̃ für ein ϕ̃. . In 2. haben wir gesehen, dass stetige
Fortsetzbarkein kein Problem ist, solange uh0(ϕ̃) < 1 ist.
Nehmen wir also ohne Einschränkung an, dass uh0

(ϕ̃) = 1 gilt. Da ϕ60◦(hk) → ϕ̃ folgt mit
den gleichmäßigen Konvergenzen aus 1., dass ϑh0

(ϕ̃) = 60◦.
Angenommen es gibt ein ε > 0 und eine andere Teilfolge (hl)l∈N ⊆W die nach h0 konvergiert
für die ϕ60◦(hl)→ ϕ̂ /∈ (ϕ̃− ε, ϕ̃+ ε) für l→∞ gilt. Für dieses ϕ̂ muss ebenfalls uh0(ϕ̂) = 1
und ϑh0(ϕ̂) = 60◦ gelten.
Damit folgt uh0

(ϕ̃) = uh0
(ϕ̂) und u′h0

(ϕ̃) = u′h0
(ϕ̂) > 0. Betrachtet man eine Lösung u von

(??) stellt man fest, dass solche Punkte ϕ̃ und ϕ̂ gerade ein Vielfaches der Periodenlänge
von uh als Abstand haben müssen. Eine Periodenlänge beträgt mindestens 180◦.

Damit ist gezeigt, dass ϕ60◦(h) stetig auf W fortgesetzt werden kann.

Lemma 4.21. Die Funktion h 7→ f ′h(180◦) ist auf (1,∞) stetig.

Beweis: Da uh, u′h, ũh und ũ′h, aus denen fh konstruiert ist, stetig von ihren Anfangswerten ab-
hängen, ist h 7→ f ′h(180◦) stetig, wenn h 7→ ϕh aus der Definition von fh stetig ist.
Um dies zu zeigen definieren wir zunächst ϕ1,h := min {ϕ ∈ (90◦, 256◦) : uh(ϕ) = 1, u′h(ϕ) > 0}.
Die Monotonie von uh zwischen seinen Minima und Maxima und die Tatsache, dass deren Abstand
zwischen 90◦ und 128◦ liegt, liefert sowohl die Existenz als auch die Eindeutigkeit von ϕ1,h. Da
nach Konstruktion u′(ϕ1,h) 6= 0 liefert der Satz von der impliziten Funktion zusammen mit der
Eindeutigkeit, dass die Funktion h 7→ ϕ1,h stetig von h abhängt.
Damit ist ϕ̃h := min(ϕ1,h, 179◦) ebenfalls stetig.
Sei nun ϕ60◦,h die stetige Fortsetzung von ϕ60◦(h) auf W , welche wie gerade eben in Lemma 4.20
definiert sind. Dann ist ϕh = min(ϕ60◦,h, ϕ̃h). Nach Lemma 4.19 ist ϕh also stetig.

Lemma 4.22. Sei h > 1 und δ > 0 so, dass 0◦ ≤ ϕh − δ und ϕh + δ ≤ 180◦ gelten. Dann ist
fh(ϕh + δ) = fh(ϕh − δ) und f ′h(ϕh + δ) = −f ′h(ϕh − δ).

Beweis: Dies folgt direkt aus der Konstruktion von fh und Lemma 4.14.

Korollar 4.23. Sei h > 1. Falls ϕh = 179◦, so ist f ′h(180◦) < 0.

Beweis: Wir wissen, dass uh sein Minimum in einem ϕ0 ∈ (90◦, 128◦) annimmt, und, dass der
Abstand zum nächsten Maximum größer ist als 90◦. Daraus folgt, dass u′h(178◦) > 0 ist, woraus
mit dem eben gezeigten Lemma 4.22 folgt, dass ũ′h(180◦) < 0 ist.

Korollar 4.24. Sei h > 1 und ϕ0 ∈ (90◦, 128◦) der Winkel unter dem uh sein Minimum annimmt.
Wenn uh(ϕ0) < cos(45◦) und uh(ϕh) = 1 gilt, so ist f ′h(180◦) < 0.

Beweis: Sei h > 1 so, dass uh(ϕ0) < cos(45◦) =: umin. Dort gilt auch u′h(ϕ0) = 0. Aufgrund der
Konkavität von Lösungen v von (??) bleibt uh auch für größere ϕ sicher unterhalb der Tangente
g an u in ϕ = ϕ0 (vergl. Abb. 4.3) . Daher wird uh den Einheitskreis um den Ursprung später
schneiden als g. Bezeichnen wir den größeren der beiden Winkel unter dem g den Einheitskreis
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Abbildung 4.3: Veranschaulichung zum Beweis von Lemma (4.24) mit Ausschnitt eines Einheitskreises
sowie Hilfsdreieck (schwarz) und einem möglichen Verlauf von uh(ϕ) (rot)für ϕ > ϕ0

schneidet mit ϕg, so folgt ϕ0 < ϕg < ϕh.
ϕg können wir aber berechnen, wenn wir das Dreieck betrachten welches von den Ursprungsgeraden
mit Winkel ϕ0 bzw. ϕg und g selbst aufgespannt wird (Vergleiche zur Veranschaulichung Abbildung
4.3).
An diesem Dreieck sehen wir, dass

0 ≤ cos(ϕg − ϕ0) =
umin

1
< cos(45◦)

ist. Es folgt ϕg > 45◦ + ϕ0.
Damit können wir schließen, dass auch ϕh − ϕ0 ≥ 45◦ gilt. Da ϕ0 ∈ (90◦, 128◦) ist, folgt, dass
180◦ − ϕh < ϕh − ϕ0 ist. Da u′h(ϕ) > 0 auf (ϕ0, ϕh) gilt, folgt daher nach Lemma 4.22, dass
ũ′h(ϕ) < 0 für alle ϕ ∈ (ϕh, 180◦].

Korollar 4.25. Für jedes h1 > 1 existiert ein h2 > h mit f ′h2
(180◦) > 0.

Beweis: Sei h1 > 1. Wir wählen nun h2 > h1 so, dass uh2
die 60◦-Bedingung in ϕs ∈ (119◦, 121◦)

erfüllt und uh2
(ϕs) < 0.5 ist. Ein solches ϕs existiert nach Lemma 4.9. Durch diese Wahl ist

ϕs = ϕh2
. Da das Minimum von uh2

in einem ϕ0 ∈ (90◦, 128◦) angenommen wird, ist der Abstand
zwischen ϕ0 und ϕh kleiner als 31◦. Folglich nimmt nach Lemma 4.22 ũh2 sein Minimum in einem
ϕ2 < 152◦ an. Da der Abstand zwischen diesem Minimum von ũh2 und seinem nächsten Maximum
mindestens 90◦ betragen muss, ist fh2

auf (ϕ2, 180◦] streng monoton wachsend.

Lemma 4.26. h 7→ f ′h(180◦) hat eine Nullstelle h∗. In dieser Nullstelle gilt ϑh∗(ϕh∗) = 60◦.

Beweis: Sei ϕh0 ∈ (90◦, 128◦) der Winkel unter dem uh sein Minimum annimmt. Wir wissen aus
Lemma 4.7, dass der maximale Abstand von uh zur Rotationsachse für große h nach Null geht.
Daraus folgt insbesondere, dass auch der minimale Abstand von uh auf (0, 180◦) zum Koordi-
natenursprung uh(ϕh0 ) nach Null geht, wenn h hinreichend groß ist. Sei ĥ > 1 der maximale
Startwert, bei dem gilt uĥ(ϕĥ0 ) = 0, 7. Ein solcher Existiert, da für u1(ϕ) = 1 für alle ϕ gilt. Wir
setzen ϕĥ0 = ϕ0

Nach Korollar 4.25 wissen wir, dass es ein ĥ2 > ĥ gibt, sodass f ′h2
(180◦) > 0 gilt.

Da 0, 7 < cos(45◦) ≈ 0, 71 gilt, wissen wir aus Korollar 4.24 ferner, dass im Falle uĥ(ϕĥ) = 1 folgt,
dass f ′

ĥ
(180◦) < 0.

Dasselbe gilt nach Korollar 4.23, falls ϕĥ = 179◦. Damit wissen wir sicher, dass falls h 7→ f ′h(180◦)
eine Nullstelle h∗ besitzt, auch ϑh∗(ϕh∗) = 60◦ gelten muss.
Angenommen es gilt ϑĥ(ϕĥ) = 60◦. Dann ist uĥ(ϕ) ∈ [0.7, 1] für alle ϕ ∈

[
ϕ0, ϕĥ

]
, da uĥ nach
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dem Minimum monoton wachsend ist und falls es ein ϕ̃ ∈
(
ϕ0, ϕĥ

)
mit uĥ(ϕ̃) = 1 gäbe, ϕĥ = ϕ̃

folgen würde, was ein Widerspruch ist.
Betrachten wir nun die Entwicklung von ϑĥ(ϕ), dem Schnittwinkel mit den Ursprungsgeraden, die
die Rotationsachse im Winkel ϕ schneiden, auf diesem Intervall.
Da bei ϕ0 ein Minimum ist gilt ϑĥ(ϕ0) = 90◦. Nach Lemma 4.17 kennen wir

(
cos(ϑĥ)

)′.
Es gilt

(
cos(ϑĥ)

)′
=

uĥ − u
3
ĥ√

u2
ĥ

+ u′2
ĥ

≤
uĥ − u

3
ĥ√

u2
ĥ

= 1− u2
ĥ
≤ 1− 0.72 = 0, 51.

Durch Integration dieser Ungleichung sieht man mit 45◦ ≡ π
4 für ϕ ∈ (ϕ0, ϕ0 + 45◦), dass

0 ≤ cos
(
ϑĥ(ϕ0 + ϕ)

)
≤ 0, 51ϕ ≤ 0, 51

π

4
< 0, 5 = cos(60◦)

gilt.
Damit folgt weiter, dass auf diesem Intervall ϑĥ > 60◦ gilt und daher ϕĥ > ϕ0 + 45◦ ist.
Wir sehen also, dass ϕĥ−ϕ0 > 180◦−ϕĥ gilt. Da uĥ zwischen ϕ0 und ϕĥ streng monoton wachsend
ist, folgt hieraus mit Lemma 4.22, dass f ′

ĥ
(180◦) < 0 ist.

Wir haben also gezeigt, dass h 7→ f ′h(180◦) auf
[
ĥ, ĥ2

]
einen Vorzeichenwechsel vollzieht. Nach

dem Mittelwertsatz gibt es daher auch eine Nullstelle.

Damit ist Theorem 1.1 bewiesen. In Abbildung 4.4 ist zum Abschluss noch eine numeri-
sche Näherung eines solchen rotationssymetrischen unter dem Gaußkrümmungsfluss homothetisch
schrumpfenden Fisches zu sehen.
Vergleichbare numerische Lösungen für höhere Dimensionen als n = 1 legen nahe, dass derartige
Fische auch in höheren Dimensionen existieren, auch wenn der Beweis hierfür im Rahmen dieser
Arbeit nicht erbracht werden konnte.
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Abbildung 4.4: Numerische Lösungen von (?) für n = 1, aus denen sich ein homothetisch schrumpfender
rotationssymmetrischer Fisch konstruieren lässt.
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