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Abstract:

The edge states of the 2-dimensional time reversal invariant topological insulator HgTe/CdTe
in the inverted regime, were reproduced. Such a topological insulator is described by the ef-
fective four-band BHZ(Bernevig-Hughes-Zhang)-model, which reveals edge states unaffected
by back scattering for certain choices of parameters.

Further the influence of a magnetic barrier and induced superconductivity on the edge states
was examined. Namely the effective g-factor § and the effective superconducting order pa-
rameter o« where introduced.

Finally a way is suggested to experimentally gain information about the g-factors gg and gg
and about the superconducting order parameters Ag and Ay of the bands of the BHZ-model.
ge and gg are coupling the four Bands of the BHZ-model in presence of a magnetic field,
while Ag and Ag couple electrons in these bands to their hole-partners, if the topological
insulator is in proximity to a superconductor.

Zusammenfassung:

Die Randzusténde des 2-dimensionalen zeitumkehr-invarianten topologischen Isolators
HgTe/CdTe mit invertierter Bandstruktur wurden reproduziert. Besagter topologischer Iso-
lator wird durch das effektive vier-Band BHZ(Bernevig-Hughes-Zhang)-Model beschrieben,
welches topologische Randzusténde fiir bestimmte Parameterwerte zulésst.

Ferner wurde der Einfluss einer magnetischen Bariere sowie induzierte Supraleitfdhigkeit auf
besagte Randzustdnde untersucht. Insbesondere wurden der effektive g-Faktor § sowie der
effektive (Supraleitungs-) Ordnungs-Parameter « eingefiihrt.

Zu guter Letzt wird ein Vorschlag zur experimentellen Bestimmung der Subband g-Faktoren
ge und gg sowie der Subband Ordnungs Parameter Ag und Ay aus den jeweiligen effektiven
Grofen g und o unterbreitet. gg und gg vermitteln in Anwesenheit eines magnetischen Feldes
eine lineare Kopplung zwischen den 4 Bindern des BHZ-Models, wahrend Ag und Ag eine
Kopplung zwischen Elektronen dieser 4 Binder und deren Loch-Partner vermitteln, falls sich
der topologische Isolator in der Nahe eines Supraleiters befindet.
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1 Introduction

Topological insulators are a novel state of matter first predicted in 1987 [1] in 2D-quantum wells
of HgTe between CdTe and were first experimentally observed in 2007[2]. Since then topological
states were predicted and observed in several other materials as well including 3D systems. Here
we will focus in 2D-systems.

These so called topologically insulating states are characterized by the existence of symmetry
protected conducting and gapless states on its surface , while its interior resembles a classical
insulator, i.e. the Fermi level falls between the valence and the conductance band. These gapless
states, behaving like massless relativistic particles, underlie spin-momentum locking protected by
time reversal symmetry. Next to possible applications in spintronics or quantum computation, the
possible occurrence of Majorana quasi-particles on the surface of topological insulators in proxim-
ity to a superconductor or topological superconductors has been a driving motor of the studies of
topological insulators over the last decade.

This thesis will keep focus on the 2-dimensional topological insulator first predicted and experi-
mentally realized: a HgTe/CdTe quantum well. After a short introduction to topological insulators
in general an effective Model describing this set up will be introduced and it will be shown how it
leads to the emergence of the helical edge states characteristic for a topological insulator. In the
subsequent chapters the influence of the breaking of time reversal symmetry by a magnetic barrier
and the effects of different set ups of superconductors in direct proximity to the topological insu-
lator will be discussed. In the final chapter an experimental way will be suggested to determine
the subband g-factors and superconducting order parameters of the model.

2 Topological insulators

This section will be devoted to explaining, what topological insulators are. As the name correctly
suggest, that they are a kind of band insulator. This general term will be exemplified in the next
subsection, while the difference between topological insulators and non-topological, or topologically
trivial, insulators will be elaborated subsequently.

2.1 Band insulators

Exploiting the translational symmetry of a crystal the Hamiltonian of the system can be reduced
to and solved on one unit cell of the crystal. These solutions are the so-called Bloch states |u, (k)),
depending on the crystal momentum k, which is defined in the Brillouin zone. The associated
eigenvalues E, (k) define the band structure of the system. Due to the fermionic nature of elec-
trons (Pauli principle) all states up to the chemical potential (,Fermi niveau,) are occupied at zero
temperature.

Since fully occupied bands do not contribute to charge transport, insulators are characterized
by a totally occupied valence band and an empty conductance band, separated by an energy gap
EA[3]. The same applies of course for semiconductors, which seem to be indistinguishable from
insulators except for the size of Ea. In fact it is possible to manipulate the Hamiltonians contin-
uously, turning an insulator’s Hamiltonian into a semiconductor’s and vice versa, without closing
the gap. We call them topologically equivalent.

In a model reducing the band structure to the valence and conducting band only, i.e. ignoring
occupied bands below the valence band and empty bands above the conducting band, all cus-
tomary insulators are topologically equivalent. They are also equivalent to the vacuum, as it
is described in Dirac’s relativistic quantum theory. With the infinite reservoir of particles with
negative energy(Dirac sea), corresponding to the valence band, the energy needed to create an
electron and a positron being Ea and states with positive energy corresponding to the conduc-
tance band(compare figure 2.1)[4].
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All insulators and semiconductors equivalent to the vacuum will henceforth be called topologically
trivial. (compare: [5],[6])

A r'
particles particles

Ea —

E=0 > E=E-
holes /:e\

Conductance band

Valence band

(c)

Figure 2.1: Qualitative band structure for the vacuum (a), a semiconductor (b) and a metal (c)

The introduction of the term "topologically trivial" already implies, that there will be topo-
logically non-trivial insulators as well, later simply referred to as "topological insulators". They
will be characterized by an insulating bulk and metallic behaviour at the surface. Examples will
be given subsequently.

2.2 Quantum Hall effect

The quantum Hall effect is obviously the quantum mechanical analogue to the classical hall effect.
It can be observed in two-dimensional electron systems at low temperatures and high magnetic
fields. It manifests itself in the quantisation of the hall conductance
2
a:nE := nG; n € No;

To understand how this is an example for a topological non trivial state it makes sense to take a

look at the Hamiltonian of a electron confined to the x-y-plane in the presence of a magnetic field
B generated by the vector potential A.

1 /. 2 2 1
HE, = o (F+ed) = o (2 +112), (1)



SUPERCONDUCTOR HETEROSTRUCTURES

where 7 is the electron’s momentum [7]. In the Landau gauge, A, = —yB (1,0,0) it is straight-
forward to show, that Hﬁy can be rewritten as

1
Hﬁy = hw, (GTCL + 2) ) (2)

where

lB lB

~ Van TV

are ladder operators with [a,a’] = 1, Iz = \/h/eB is the magnetic length and w. = h/ml% the
cyclotron frequency. The corresponding energy eigenvalues to ny and thus the band structure
is given by

a (IL,, — 4I1,,); al (I, + 411,

1
E,, = hw, <m+ 2); m € Np. (3)

These energy levels are called Landau-levels. Semi-classically this can be understood as electrons
being forced on a circular trajectories with cyclotron frequency w,. by the magnetic field.

If now m bands are filled with electrons, once again an energy gap separates the occupied bands
from the empty bands, like in the case of an insulator. However unlike a conventional insulator
the quantum hall system is characterized by the finite Hall-conductivity. This implies that the
two systems cannot be equivalent, i.e. their Hamiltonians cannot be continuously turned into each
other without closing the gap, which would lead to metallic behaviour.[5][6]

It might seem contradictory, that a system with the bulk band structure of an insulator comes
with a finite conductivity. It will turn out that the charge in the quantum Hall system is carried
along the edges of the system. Since the quantum Hall system requires a Hall voltage applied to
it, it is impossible to create a quantum Hall system without edges. This applied voltage however
bends the m occupied Landau-levels on one edge over the Fermi level. Laughlin’s gauge argu-
ment(compare [7] ch. 6.1) proofs, that a finite current leads to m occupied momenta above the
Fermi level at one edge and m empty momenta below the Fermi level at the other edge, manifested
m charge carrying states on either edge, each contributing to the conductivity of the edge with Gj.
In other words there are m open channels for charge transport on each edge. States on different
edges counter propagate. Qualitatively this can be understood in a classical way. In the bulk
electrons orbit in circles leading to the Landau levels. At the boundaries however they cannot
complete their circular trajectories, but are backscattered instead, which causes them to bounce
along the edges(compare figure (2.2)). The counter-propagating, so-called chiral edge states will
be characteristic for 2D topological insulators in general.

So far it was discussed, that the vacuum and a quantum Hall system belong to different topo-
logical classes. In fact it will turn out, that systems with different Hall conductivity ¢ belong
to different topological classes as well. This seems clear, since the Hall conductivity is related to
the number of Landau levels below the Fermi energy. When changing the Hall conductivity of a
system from mGy to (m + 1)Gp by continuously altering the Hamiltonian the gap between the
mth and (m + 1)th Landau level will close and a new one will appear between the (m + 1)th and
the (m 4 2)th, i.e. the topological class changed.

More quantitatively it can be proven, that, if the Hall conductivity o is the m-fold of the conduc-
tivity quantum Gy, then m is the first Chern number of the System.(compare [7] ch. 3)

mi= Y %/Tzfnez, (4)

filledBands
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Figure 2.2: Skipping orbit picture or classical explanation for edge current in a quantum hall system

where f = %(un(ﬁﬂgﬁ\un(@) - a%y(un(ﬁﬂa’,fmn(g)) is the Berry curvature, which will be
introduced in 2.2, and T? is the Brillouin zone, which has due to its periodicity the topological
properties of a 2-Torus for a 2-dimensional system. The Chern number gives a distinction between
topological classes of vector-bundles, here the Hilbert space vectors, eigenvectors of the Hamilto-
nian, on a smooth manifold, here the Brillouin zone. Different Chern numbers disprove topological
equivalence.[8] The opposite is not the case, nevertheless we will differentiate different topological

classes only by their Chern number, i.e. their Hall conductivity in 2D-systems.

Berry phase, Berry connection and Berry curvature

It was stated priorly, that a system’s Hall conductance is proportional to the first Chern number,
which in turn is the 27th part of the Berry Phase over a closed path in the Brillouin zone. The
terminus Berry-phase will be intruduced in this section.

Consider a general Hamiltonian H(R) depending on a set of parameters & = (k1(t), ka(t),...)
with normalized eigenstates |n(<)) and pairwise different eigenvalues E,, (R) (For the calculation
of the Hall conductance these will be the 2,3-dimensional wave vector k and the eigenstates will
be the Bloch states.)

The eigenstates of H(R) will remain eigenstate even if Z(t) is altered smoothly or in other words
moved along a continuous path C' in the parameter space. This means though, that an state
|n(R(0))) could have only achieved a phase ¥(t) during this altering of R(¢). The time evolution
of said state is thereby given by

HR()e™ O n(F(1))) = ih e~ Oln(R(H)) )

Multiplication from the left with the bra-state (n(&(t)) leads to a differential equation for the
phase ¥(¢) with solution

o) = [ Bu(R)dr =i [ ()] r)hr ©

to

=Tn

The first term is the well known energy dependant time evolution, while the second term, defined
as 7y, is the Berry-phase.
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Further calculation shows, that the Berry phase is in fact time independent.

K

o= [ () g o =i [ () ) a7 @

=An (’_{)

A, (k) is called the Berry connection or Berry vector potential. The independence of time combined
with the degeneracy of the eigenstate we took for granted, leads to the conclusion that if the path C
in the parameter space is a closed loop the phase acquired must be a multiple of 27, i.e. v, = 27m.

Considering a closed loop and a 3-dimensional parameter space allows to apply Stoke’s theorem
on the last equation yielding to

3
Yo = i/d§(V,; % An(R)) :i/‘z dsieijka‘;<n(g)|£€|n(z)>,

ij, k=1

=fn

where dS is the surface of the parameter space and f, is the Berry curvature. In the special case
of K = k 05 is the Brillouin zone, i.e. a Torus. For a system in the x — y-plane, hence k, = 0 and

822 = 0 the Berry curvature has the the same form as stated priorly.[6][7]

3 Time reversal symmetry

Time reversal symmetry is an important concept in the realization of topological insulators, espe-
cially concerning the quantum spin Hall insulator, which has zero net Hall conductance, but non
vanishing spin transport through the edge channels.

The time reversal operator 1" reverses the flow of time, i.e.
T:t— —t

Signs of operators including odd orders of time explicitly as well as operators including time
implicitly, as for example in terms of the time derivative, are changed as well. The other operators
remain unchanged. This means, that T will change the sign of the momentum operator p, while
the position operator Z remains invariant under time reversal. From this a representation of T for
spinless particles can be deduced.
T[&,p) T = —ih=[2,p]"
=T=K,

with K being the operator of complex conjugation.

For spinful particles it has to be considered, that the spin S , as internal angular momentum,
has to be odd under time reversal, i.e. TST~! = —S, which can be understood as a spin-flip or a
rotation by 7 around any axis in spin space. Therefore one representation can be given as

T = e—iﬂgy/ﬁK
For spin—%—particles with § = g(ar, 0y, 02), it leads to
T =—ioy K

Note in particular, that 72 = —1. The last fact allows it to proof Kramer’s-theorem, which states,
that in every time reversal invariant system with an odd number of half-integer spin particles there
are two or more degenerate states. [7][12]
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Proof. Be H the Hamiltonian of a time reversal invariant system, i.e. [ﬁ ,T} =0, and |h) an

already normalized eigenvector to the eigenvalue h.
This implies, that T'|h) is an eigenvector to the same eigenvalue.
If c|h) # T|h) for ¢ € C, there are at least two degenerate states as stated by the theorem.

Hence assume: Jec € C with
c[h) = T|h) (8)
Multiplication with (h|T yields using T? = —1 in
—1 = (B|T?|h) = (h|Tc|h) = (hlc"T|h) = |c[*4 (9)
O

Since they are related via time reversal each per of Kramer-partners have opposite spin.

Kramer’s theorem has remarkable consequences for the Hall conductance of time reversal invariant
systems. Exploiting, that 7T = —T it can be seen rather quickly, that the berry curvature
fu(=k) = —f,.(E) of the Kramer partners have opposite sign. Since Kramer’s theorem states, that
these states are degenerate they are either both occupied or both empty, i.e. the Hall conductance
is zero.
If the Hall conductivity for each Kramer partner individually is not zero, this leads to an interesting
situation called a Quantum spin Hall insulator. State-wise non zero Hall conductivity implies open
edge channels for each partner, since due to time reversal symmetry these edge states are counter
propagating, this leads evident from the vanishing net Hall conductivity to a zero net charge
transport as well. Then again, since the edge states do not only differ in momentum, but also in
their spin quantum number, there is a net spin transport along the edges.

4 BHZ-Model

The discussion of the quantum Hall effect as topological property leads to the question, whether
topologically non trivial states can only be obtained in presence of a magnetic field. The answer
is no, in fact systems described by a simple Dirac Hamiltonian Hp = dG with d = (kg Ky, M)
exhibit for certain values of M topological edge states carrying charge despite their bulk energy
gap.[7]

In this section the existence of edge states will be shown exemplary for a slightly modified Dirac
Hamiltonian describing HgTe/CdTe quantum wells, the first topological insulator to be experi-
mentally realized.[2]

These quantum wells consist of a thin layer of HgTe of thickness d between to layers of CdTe. d
can be small enough for the whole system to be viewed as 2-dimensional. (In the following a 2
dimensional system in the x — y—plane is assumed.Compare 4.1.) The effective in- plane band
structure of both materials is described by the subbands F4, Hy, each double degenerated due to
time reversal symmetry. The other bands are far from the other two, why it is neglected, leaving
an effective four-band model.Compare figure 4.2

The order of these subbands in HgTe is inverted compared to CdTe. In the quantum well,
however, it depends on the thickness of the well, whether the inverted regime is dominant or not.
For thickness d > d¢ = 6.3 nm it is inverted, i.e. H; > E;,(Compare fig 5.1.) It turns out that
the topologically non trivial state emerges in the inverted structure.

The four-band Hamiltonian will be written in the basis order |Ey, +), |Hy,+), |E1, =), |H1, —),
where =+ refers to the two Kramer partners on each band. Due to the time reversal invariance
of the system the Kramer partners do not couple, hence the off- diagonal 2 x 2-blocks have to
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CdTe

d { HgTe

CdTe

Figure 4.1: schematic of the 2D topological insulator HgTe between layers of CdTe

H1-

dyggre (100 A)

Figure 4.2: Energy of the quantum well in dependency of its thickness d (taken from [P1])

be zero. (The crystal structure of HgTe is not inversion invariant, which would in reality lead
to off diagonal bulk inversion asymmetry terms, which however are very small why they will be
neglected here, since the do not affect the topological mass term.[9])

The remaining diagonal block will be the time reversed version of the upper one.

FE;- and H;-bands differ in parity and have a difference of 1 in their orbital quantum number,
H, is p-like and F; is s-like. The the following Hamiltonian, which was first introduced by
Bernevig, Hughes and Zhang (BHZ):(compare [10][7][9])

(k) = (H(()k) H*(O—k)> (10)
where
H(k) = eI, + d5 (11)
and
e=C—D(kl+k]) (12)
Ak,
d=| Ak, (13)
M(k)
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§ = (s1,82,83) are the Pauli-Matrices acting on the F; — H;-space. The parameters A, B, D, M
depend on the geometry (/thickness) of the quantum well. They can be calculated numerically
k - p-theory.[11]

C is the chemical potential determined by a gate voltage.

4.1 Edge states in BHZ-model

The bulk energy spectrum of this Hamiltonian is

Ey=C—D(2+k2)+ \/(MfB(k}; +k2)2 4 A2(k2 + k2), (15)

hence it is gapped. This means that the system is an insulator in the bulk. However as we will
show edge states can exist. To see if they actually occur in this kind of system the Schrédinger
equation has to be solved. Since the Hamiltonian is block diagonal the eigenvalue problem of each
block can be solved separately. Conveniently all blocks are related either through time reversal or
opposite signs of energy, so that after retrieving the solution for the topmost block the solutions
for the other blocks can be derived from it.

For this reason all that remains to solve is the 2-dimensional problem

HK)U = H(K) (i’;) _E @;) (16)

The chemical potential C is irrelevant for the calculations why it is set to zero for the moment. It
can be reintroduced later by the replacement £ — E — C.

Assuming an insulator strip with an edge along y = 0 and the other one far away at y = L — oo
and open boundary conditions, i.e. ¥(y =0) =0 = ¥(y = L), k, = p,/h hast to be replaced
by the momentum operator —id,. The translation invariance along the x-direction be preserved
(periodic boundary conditions), i.e. k, remains a good quantum number and ¥(z) o ek,

Thus the Schrodinger equation becomes the following differential equation:

N M—(B+D)(k§—8§)—E A(ky — 0y) 0, _ 0 (17)
A(ky + 0y) ~M+(B-D)(k2-0;)—E) \¥)
The Ansatz ¥(z,y) = et=ev <§+), leads to
M — (B+D)(k2-))—-E A(kz — N) 01 —0 (18)
A(ky + M) —~M + (B —-D)(k2 = )% —E) \¢2
If non-zero solutions exist the determinant of this matrix has to be zero.
M~ (B+D)(k2-)*)—-E Ak, — M) _0 (19)
A(kz + ) ~M +(B—-D)(k; - X) - BE|

This is a quadratic equation in A, with the following solutions:

(M2 — E?)

BB (20)

)\f’zkﬁJer:\/F?

A?—2(MB+ED)

BT_D? was introduced.

In the last step F' :=
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Symmetric conduction and valence bands: D=0

To illustrate the procedure the edge states will be calculated for the case D = 0, k; ~ 0 and
E ~ 0. The steps in this special case are very similar to the general case, so that this will help to
understand the more complex version as well. [9]

This simplification allows it to display A; 2 as

2, =L (A + /A2 — 4MB>2 (21)

12 =y R2

P P % (A + /A2 4MB) (22)

More interesting than the simplification of A; 2 though, is that equation (18) can now be rearranged
as follows.

o+ B )isys. (51) = ana (1) (23)

=S

From which it can be seen that <¢1> has to be an eigenstate of s, and thus after normalisation

b2

mina) woem i)

By solving equation (23) as a quadratic equation for A; 5 and comparing it to the prior result, it
can additionally be seen, that ¢, is the solution for +X; 2 and ¢_ is the solution for —\; 5.

either

Hence there are four linear independent solutions e**1:2¢ for the Schrddinger equation , i.e.
the general solution is a linear combination of them

U(z,y) = ((are™? +b1e*Y)dy + (are ™Y +bpe V)¢ ) et (24)

The normalizability of ¥(z,y) implies, that two of the four coefficients have to be zero. The
remaining two coefficients can be determined by imposing the boundary conditions ¥(z,0) = 0.
It can be differentiated between to cases: either the real parts of A\; and Ay have the same sign or
the opposite sign.

In the second case all four coefficients are zero.This is the topologically trivial state, because no
edge states exist. Looking at A; 5 one can see that this occurs for % < 0.

For % > 0 it turns out, that ay = by = 0 for RA\ 2 < 0 and a— = b_ = 0 for RA\;» > 0 or
else ¥(z,y) could not be normalized for large L. Furthermore the boundary condition at y = 0
requires for the remaining two coefficients a+ = —b_.

The gathered information leads to the following form of ¥(0,y):

+ o iksogE _ 0% kew (tMy  Adey) [ L
v, (z,y) = ™="V*(0,y) = \/ée (e e ) <i1 , (25)
=rfx(y)
where the upper sign belongs to the case ®A; 2 < 0, realized for A/B < 0 and the lower sign belongs
to RAy 2 > 0 for A/B > 0.The term a4 is a normalisation constant with ﬁ = OLHOO | f+(y)]2.

To see, that this state is indeed concentrated on the edge of the insulator strip its absolute square
is plotted in figure 4.3 for an exemplary set of A, B, M. It can be seen that the wave function is
approximately limited to 0 < y < 200. The thickness of the quantum well is d > d. ~ 61. Since



10 QUANTUM TRANSPORT IN TOPOLOGICAL INSULATORS

1073
I
1.5 -
3 1 :
2 &
PR
2
0.5 -
0 |

| | |
0 200 400 600 800 1,000
yll

Figure 4.3: probability distribution of edge states for A = 3.78¢V,B = —55¢V?, M = —0.00015¢V and
quantum well thickness d = 61., compare: [9]

the system is supposed to be 2-dimensional it is safe to assume, that the width L of the strip is
much larger than its thickness (L >> d) and thus the name edge state is appropriate.

The approximate penetration depth of the general edge states is given by its characteristic length
le = |max{\;2}|7!. To obtain the dispersion relation of the edge state its energy expectancy
value at arbitrary x can be calculated. This corresponds to the projection of topmost block of the
bulk Hamiltonian onto its eigenstate.

L—oo
<Wi@MMHﬂQWi@wm:ié (9 (2,9)" HR)E (2, y)dy (26)
L—oco 1 ) ) N 1 B
= /o §\a| Lf @I (1 il) dy - 0y (j:l) dy = Ak,

The edge state \ifi (z,y) at y = L will have the form.
Uy (2,y) =V (z,y+ L) (27)

The change from + to F is due to the fact that, seen from the right edge, opposite signs of A; 5
render normalization impossible. Note, that this is still only true for large L (L >> d.).
Comparing the wave functions at both edges of the strip, it can be seen, that they are basically
each other mirror image, mirrored ate the middle of the strip (y = L/2), as illustrated in figure
4.4.

Concerning the dispersion relation £ turn into F as well of course. This however has the conse-
quence, that for a fixed energy E the edge states in each edge have to have opposite momentum
k., i.e. they counter propagate. This can be made clear easily by imagining the tow edges being
connected at x = oo as illustrated in figure 4.5.

Since the states on the right edge do not offer new information from now on the focus will be
set solely on the left edge, if not stated differently. Furthermore to increase the clarity it will be
assumed that A/B < 0, i.e. the lower sign in all equations in this sections will be dropped and
the simplified notation ¥y (z,y) = \I/;C: (z,y) will be used.

So far only the edge state ¥y (x,y) for the topmost block of the bulk Hamiltonian were calculated.
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Figure 4.4: probability distribution of ‘\Iliz(y)’ (blue) and ’\Iltl(y)’ (red) at different edges.
(L=63nm,A = 3.78¢V,B = —55eV?, M = —0.00015eV ,d = 61

Figure 4.5: qualitative image of counter propagating Kramer partners(red/blue) on each edge and
connection of edges at co(grey)

However as mentioned previously the solutions for the remaining block can also be deduced from
this solution. Since it is the time (and spin) reversed partner of ¥y (x,y) it can be obtained by

setting k, — —k,.
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These considerations lead to the two edge state solution of the Hamiltonian:

1.D=0)= (\I/k %x,y)>; 2,D =0) = (\I,_kf(x,y»

where + is for counter propagating Kramer partners and e/h refers to electron/hole-like states.
Their dispersion relation can be summarized in the effective Hamiltonian (, projection of the
Hamiltonian onto the edge states),

H' = Ao, 7, (28)
or equivalently

B = GH0)), g € {1,2,8,4) 29)

2]

where (-} = [F7()1()dy.

Asymmetric conductance and valence bands: D # 0

The results for the general BHZ-model D # 0 can be obtained similarly as in the simplified case.
While the general form of A\ 2 is already known (compare equation (20)), the eigenvectors of the
Hamiltonian become unlikely more complicated.

, 1\ .
To find them the ansatz U (z,y) = ————ef=eFr2 [ 7, ) is used.
1~H’u)i' |2 U):t

Plugging this ansatz into the Schrodinger equation again allows it to solve for wi’Q and thus
determine the eigenvectors.

w172 _ A(kw i )\1’2)
£ T E+M+(B-D)(\,—k2)

(30)

So again four linearly independent solutions were found and a general solution can be constructed
as a linear combination of them.

T(0,y) = al eV <u}11+> + a3 et (wli> +ale Py <wll) + a? e MY (1012> (31)

Normalizability of ¥(z,y) requires that all positive exponents vanish. Since the real parts of \;
and Xy have the same sign this means that either a} = aﬁ_ =0oral =r_ =0. This can also
be seen by simply applying the boundary condition ¥(z,y). Any other combination of vanishing
coefficients would require the remaining two coefficients to be zero as well.

This results in

WE(0,y) = al My <w1i) + a2 (wlf,) , (32)

where the upper sign as before corresponds to tA; o < 0 and vice versa.

To fulfil the boundary condition ¥*(0,0) = 0 the first component of equation (32) requires al =
—a?%. Inserting this into the second component a then leads to w4 := wl = w?. This is a closed
equation for the energy F, allowing it to calculate the dispersion relation of the edge states. At
the same time the wave function is completely determined.

1

ikyx 1
T 0 (ua ) @

DM B2 — D2
1/ - 4
Ey = i + A 2 ky +C (3)

Ui (z,y) =
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Compare[13].

For a better overview the lower sign is dropped in the notation (if the parameters require - instead
of + as a solution this can be reintroduced by changing the sign of v,). If the chemical potential
is placed in the middle of the gap, i.e. C' = DM /B the dispersion is

B2 — D2
E=A Tk'x = h?]gk;m (35)

B2_D2
BZh?
three blocks and easily be deducted from Uy (z,y). As a reminder, the two edge states are the

following:
= (q;,% %% y)>; |2) = (\I!_kf(x, y)>

with the velocity of the edge states v, = A . As before the edge states for the remaining

And the effective Hamiltonian of these four states is given by
HY = o, (37)

As before the effective Hamiltonian is obtained by projecting the original 4 x 4 Hamiltonian onto
the edge states, or in other words

HiT = (i|H(k) ), (38)

with
L
() = / () () dy. (39)

In this reduced Hilbert space the edge states |1) and |2) work as a basis. Note that in the process
of projecting the Hamiltonian onto the edge states, which are a superposition of conductance-
and valence band states, the information about these two bands was lost. Hence the Hamiltonian
contains no more trace of the s~Pauli matrices, but only of the o; acting on the Kramer-spin space.
Note that the form of [¥¢, |2 in y-direction is if A\; » € R is qualitatively the same as in the case

of D =0. For A\ € C\ iR \I/i,fm will show the behaviour of a periodic function enveloped by
a function decaying in y-direction as in the D = 0-case. Hence both alternatives lead to states
concentrated on the edge. The condition for A\; o ¢ iR are ﬁ > 4% >0 [14]

5 Breaking of time reversal symmetry

So far the effective 2 x 2 Hamiltonian of the edge states in a system invariant under time reversal
was determined. In this section the consequences of a time reversal breaking barrier over the full
y-range of the topological insulator will be discussed.In z-direction it shall be situated between
x = 0 and z = dp Experimentally this could be realized by putting a ferromagnet on top of the
topological insulator device as it can be seen in figure 5.1.

To theoretically realize the breaking of time reversal symmetry the effective Hamiltonian of
the edge states has to be modified. A general modification has the following form.

Hpoq = Heff + ngog + 15 (40)

The n; could be depending on x, it shall be assumed here though that they are constant for
0 < x < dp and zero everywhere else.

13
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ds

f—}%

Magnet

CdTe

d { HgTe

CdTe

Figure 5.1: schematic of the edge a 2D topological insulator with magnetic barrier

So the effective Hamiltonian along the x-direction for the topological insulator with a magnetic
barrier considered here will have the form

hvgk,o, for x <0
H = { hogkyo, + C' + upgitd  for 0 <z < dp (41)
hvgkgo, for dgp <z

Where C could be a varying chemical potential within the barrier.
In the basis order |1), |2), the Hamiltonian within the barrier is represented by

hvgky, +C' +n Ng — in
eff _ ghvx z x Y
H < Ng + Ny —hvgk, +C" — nz> (42)

The solutions outside of the barrier are obviously the two basis vectors, so that it will be enough
to solve the Schrédinger equation within the barrier and then joint the functions continuously.

Note, that within the barrier the energy dispersion of the edge states becomes

E = C'% \[W202k2 + 02 + 02 + n2, (43)

hence a gap opens in the spectrum, as it can be seen in figure 5.2

Reflectionless propagation:n, =n, =0

To show some interesting consequences of intact time reversal symmetry the case n, = n, = 0,
which does not break it will be discussed before the more general case.

To solve the Schrédinger equation within the barrier &, is replaced by its operator representation
—i0,, making the equation a first order differential equation. For the upper block it reads as
follows.

h%%crz@(x) = ((E —=no)l —n.o,) ®(x), (44)

which is solved by
B(z) = a-e™|1) + b- e T|2), (45)
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0.5 1

Elhvg/nm)]

—0.5 =

-1 —05 0 0.5 1
kz[1/hvg)

Figure 5.2: energy spectrum of the edge states outside of the barrier (red and blue), inside the barrier
(black) for n2 +n; + n? = 0.1h%v; /nm?, C'=0

where £}, and k!/ are defined by

_E-C'—n,

E—-C +n,
hog ’

ko
z hw,

Kl =
Viewing this as a tunnelling problem a state |1) incoming from the left (x < 0) is either reflected
back to z < 0 into left moving state |2) or transmitted past the barrier into a right moving state
|1) . Keep in mind, that the states |1) and |2) are counter propagating and hence neither reflection
from |1) to |1) nor transmission from |1) to |2) is possible. Assuming no state |2) propagating from
the right > dp towards the barrier the following boundary conditions for ®(x) are obtained:

®(0) = [1) +r|2); O(dp) = 1[1),

where ¢ and 7 are transmission respectively reflection amplitudes. Note, that since the Schrodinger
equation is a first order differential equation only the functions itself, but none of their derivatives
have to be matched at * = 0 and =z = dp.[4]

Applying these boundary conditions the variables a« = 1, b = r = 0 and ¢ = ™95 can be
determined. Note that the transmission 7' = [t|*> = 1 and the reflection R = |r|> = 0 are abso-
lutely independent of £, C' and n.. It can hereby seen, that intact time reversal symmetry renders
all backscattering impossible. The transmission 7" and reflection R for the states |2 — 4) are the
same. The exact form of their transmission and reflection amplitude will be discussed with more
generality in the next section.

Qualitatively this can also be understood as an interference effect. When a for example spin-
up electron is backscattered into a spin down state the spin has to be rotated by = or —7. Since
the resulting state is a superposition of both possibilities and for spin-1/2-particles a spin difference
of 27 corresponds to a factorial difference of —1 the interference is destructive.|[6]

Imperfect transmission: n, # 0 # n,

Now an arbitrary breaking of time reversal symmetry , i.e. n, # 0 # n,( still assuming, that they
are constant over 0 < x < dp tough) shall be allowed. This will result into non zero reflection R .

15
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Since the Hamiltonian remains block diagonal the Schrodinger equation can be solved blockwise
again. The equation for the upper block is reduced to the following.

9 ,
%(I)* = hng (Eo, —n,1+ ingoy —inyo,) ®*(z) (46)
1 [i(E—no—n;) ny+ing "
Tl ( Ny — ing i(—E —n,) " (@), (47)
=M
where ®* = ¢,® was introduced. A general solutions to equation (46) is given by
@ (2) = M (1) - b]2)). (48)
From this the actual solution ®(z) can be derived.
®(z) =0,0*(z) = 0. (a|1) — b[2))
=oM% (af1) — b[2)) = e M (a]1) + B]2)) (49)
M is diagonalizable and therefore the matrix exponential e”=7=% can be calculated easily with
the result
. ny+ing ) sinh #m’
_in=, [ cosh (#x) + %Sinh (#x) _{ ) ” (7 g )
eonaz:n — ¢ 'Ry g ‘ . g , (50)
(ny—ing) smh(hzg m) (v iE - h( -
— ” cosh | zi-a ) — 7 sinh { 7=
and
. Ny +ing)sinh( %z
woe  ioms [cosh () + =2 sinh (7a) (nyina) sinh (55)
e~ 0xMozx _ 'Ry 9 9 . (51)

(ny—ing)sinh( %z . .
! (h“g ) cosh (Lx) — ZiE ginh (Lx)
v hvg v hvg

In the last step
vi=/nZ+ni— (E)? (52)
was introduced.

With this collected information the ®(x) can be determined for arbitrary boundary conditions
and thereby the transmission and reflection amplitudes can be calculated.

Since |1) and |2) are Kramer partners they are always counter propagating. For a given energy
E > 0 |1) is propagating with positive k, and |2) with a negative k.. Hence a the right propagating
state |1) will be reflected into the state |2) at the barrier or be transmitted. Same applies for the
a state |2) approaching the barrier from the right side. Note, that, if the sign of the energy
changes, the sign of k, changes as well and hence the propagation direction is inverted. From
these considerations the boundary conditions shown in table 1 and can be derived. Inserting the

] | direction of propagation | be at x=0 \ bc at x=dp \
E>0 Toft = right SO =) Fre2) | 9ds) =)
E>0 right — left O(0) =15 12) O(dp) =|2) +rE 1)
E <0 right — left ®(0) =" [3) ®(dg) = [3) + 17 |4)
E<0 left — right ®(0) = [4) +r"]3) ®(dg) = t", [4)

Table 1: boundary conditions to determine transmission and reflection amplitudes of the edge states
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boundary conditions displayed in table 1 gives linear systems of equations for all transmission and
reflection amplitudes. The results obtained are:

e _ Ny — Ny Ti _ Ny + 1My
Vcoth( dB> —iF Vcoth< dB) —iF
_— —My — Ny Ti _ —TNy + ing
v coth (fw dB> —iF z/coth< dB) —iF
e, = e g th =r1%e” R (53)
= () = ()’

where 7 was defined as

7 = cosh (VdB> + HE sinh <%d’3) (n2 4+ n2)sinh (—dB)

hw,g v2 coth (—dB) —iEv

If the time reversal symmetry is broken by a magnetic B field as proposed in the introduction of
this section a spin coupling between the two degenerated conductance band states and between the
two valence band states of the form ppgp /B has to be added to the original BHZ-Hamiltonian.
The term pp is the Bohr magneton and g, are the g-factors of the conductance and the valence
band.

In the basis order |E+),|H+),|[E—), |H—) this additional term to the Hamiltonian has the form

uBgEB. 0 uBYE (By —iBy) 0
0 pBgaB. 0 uBgH (By —iBy)
Hitay = . v (54
Mag puBgE (B +iBy) 0 —uBgEB: 0 (54)
0 pBgH (Be +iBy) 0 —puBgH B,
or shorter
Hytag = b5 (94 + g-s.) GB. (55)

where as before s are the Pauli matrices acting on the conductance band- valence band space and
& act on the Kramer-spin space. Further g, = 5 (9g + gu) and g = § (95 — gu) were introduced.

This Hamiltonian will be, as the BHZ-Hamiltonian before, projected onto the edge states |1)
and |2). In this basis it has the form

I (( (9+ +% (ks) 9-) B: (94 + (K x)(g

(B — iBy)
g+ +v(ks)g-) By +iB,)  — (g4 ) (56)

)
ka:)g )Bz

=5 (95 +7 (k) 9-) (02 Ba + 0y By) + (94 + L= (5 (k) + 4 (<ka)) ) 0B + 2= (3 (ka) = 4 (k) Bz ) -

2
Here the two terms v(k,) and (k) were introduced. They are defined as

(k) = 11 657)
and
1 —w*(ky)w(—kz) (58)

ky) = .
) V1 [wke)Py/1+ [w(—kx)?
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Comparing the equation 42 to equation 56 yields to the following relations:

na =pB (9+ +v(ka)g-) Be := g B (59)
=pB (9+ +v(ka)9-) By := pgBy (60)

g will be referred to as the effective g-factor from here. The remaining term %- (’y(kx) — 7(—Akx)> B,

acts like a chemical potential, but vanishes for k, =~ 0. Since this limit will be sufficient for all
further purposes this term will be ignored from here on.

The remaining terms lead to the following reflection and transmission amplitudes.

e _ _ hBg(By —iBy) h  1Bg(By+iBy)
’r‘_> = r_) =
v coth (%gd3> —iE v coth (#gdB) —iE
e _  hBY(=By —iBy) n BB (—By+iBy)
T’<_ = r(_ =
veoth (3-dp) — i veoth (3£-dp) — iE
g g
_ ILB??szm h _ilLB.@szw
te_) =T€ hvg th, = e hvg (62)
te = (%) o= (")
1E sinh (#dg) (LBg (B; +B§))smh( dB)
T := cosh <d5> ‘ —
hvg v v2 coth (—dB) —iEv
with
Y= \/u (B2 + B2) — E2. (63)

Note, that only the in-plane components B, and B, actually change the amplitude of the
transmitted state, while B, only adds a phase. Note further, that reflection R = |rf_>/h|2 and
transmission T = [t¢/""|? is the same for all states, namely

1p59° (B: + BY)
V|2 coth? (ﬁdg) + E?

B -
1 _p_ 2 2
T=1-R (cosh (hvg dB) e sinh (hvg d3>> (65)

For E=0 the reflection and transmission are identical to the values derived from the scattering
matrix calculated by Carsten Timm et al in [15], where a delta-peak like magnetic barrier was
assumed. It is also conform with the work of Nojoon Myoung [16]. The second paper considered
graphen instead of HgTe-quantum wells, which due to its linear dispersion holds similar results.

R:

(64)

The equation T' = 1 — R (charge conservation) used to calculate T is not a mere assumption
here, as self-evident as it might seem, but can be proven by exploiting the fact, that o, Mo, = —M
and hence

t i
1= eM—i—azM ox €M '€UZM os (66)
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Proof.
L= R = ({1 + (%)" (2]) (1) +75,]2))
= (U + ()7 @) e7=Mo=t2) (Mg (1) +1¢,]2))) =T (67)

=(t<,)" (1] =t 11)

Since T" and R are the same for all states, the choice of basis states used to proof the equation
does not matter. O

5.1 Conductivity

The BHZ-Model as introduced above shows two edge states on each edge. This corresponds to
2 channels for charge transport on each edge, each contributing to the conductivity of the whole
device with Gy = €?/h, hence the total conductivity is given by

Giot = 2Go, (68)

where n. is the number of channels contributing to the charge transport. With the possibility of
backscattering, as it is the case with a magnetic barrier added to the topological insulator, the
conductivity will decrease though. Reflected states will not contribute to the charge transport at
all, while transmitted states contribute unaltered, leading to the reflection dependent conductance
of

Grot(R) = (1 = R)2Go (69)

In generally the conductance would be calculated as G = Go>.%" T, where T, are the

Transmission values of each channel. Because T is the same for all edge states, this is reduced
to equation (69) here though. Since the reflection was recently calculated the change in the
conductivity device in dependency of the Energy E, the strength of the magnetic field |B| and the
width of the barrier dg can be discussed and displayed.

Barrier thickness and magnetic field dependence at E=0

In the case of low energy F = 0, which in reality will be the relevant one, since the BHZ-model
was designed solely for these low-energy systems, the reflection (and transmission) reduce to

61 B il B
R = tanh? <MB;}|||dB), T = cosh ™2 (de) (70)
g g

with B = (B, B,)T. Both functions are monotonous with 7' converging to zero ,7° — 0, for large
magnetic fields or a great width of the barrier upg|B)|dp > hv,, hence R heading towards 1, as
it would be expected in the first place.

At the same time, for vanishing magnetic field or barrier thickness upg|B|dp < hv, the trans-
mission becomes 100%, which is in agreement with the results in section 5, where time reversal
symmetry was not broken. The progression of the conductivity in dependence of the magnetic
field and the barrier width for £ = 0 , just discussed, is displayed in figure 5.3. dp is displayed
in units of kv, /|gB)| and |B| in units of hwv,/|g|dp Measurements of the conductivity for varying
|B| or dp seem promising in order to access the value of |g]|

Conductivity at finite Energy

Considering finite energies E two cases need to be distinguished. The first one £ < mpg|B)| is
qualitatively the same as E = 0. For dg — oo the reflection R approaches 100 % and for dg — 0
the transmission T" does likewise. The increased energy does cause a damping in the change of the
reflection though, i.e. high energy states are more likely to pass the barrier at the same barrier

19
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1.2

G[G10t(0)]

dg/|B|

Figure 5.3: conductance G in units of 2Gg of a topological insulator strip with magnetic barrier dp

respectively |B].

width, as one would expect naively.

The second case E > mp|gB| is more interesting though. In this case v becomes an imaginary
number, turning the hyperbolic functions describing R and T into trigonometric ones,(cosh(iz) =
cos(z), etc.), which causes both R and T to vary periodically with dg. More precisely R will
vary between 0 and p%|gB|*/E? and the periodicity will be whv,/v. The dependence of the
conductance on dp for the second case is displayed in figure 5.5.

1.2 1.2
5 S
3 3
S} S}
O] O]

0.2 8

00 1 2 3 4 5 OO 5 10 15
(a) E[hvg/ﬂBmmB] (b) E[hvg/ﬂB|g|dB]

Figure 5.4: conductance G of a topological insulator strip with magnetic barrier in units of 2Gy in
dependency of F in units of fivg/up|g|ds for (a)|B| = hvg/ugr|jlds and (b)|B| = 2hvg/us|glds. )

Concerning the | B|j|-dependence of the conductivity the limits remain unchanged independently
of the energy, i.e. for |B|| — oo R approaches 100% and for |Bj| — 0 R approaches 0. However,
in between one has to distinguish between the two cases v € R and v € iR once again. In the first
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case, i.e. upg|B|| > E the nonzero energy only leads to a damping in the change rate of R and
T, while in the second case R is no longer monotone in |B|, but instead vary non periodically (v
depends on |By|) between 0 and p?¢?|Bj|?/E?. As a function of energy for fixed magnetic fields
the reflection falls, from its value for E¥ = 0, monotone till £ = ppg|B)|| and from then on, while
still converging towards O varies non periodically as well. Plots of the conductivity in units of
G1ot(0) = 2¢*/h for both cases and depending on E with fixed |By| and depending on |B)| with
fixed E are displayed in figure 5.5 and figure 5.4.

1.2 1.2

0.8

0.6 -

G[G10t(0)]
G[G1ot(0)]

0.2 N 02

=)
o

0 2 4 6 8 10 0 1 2 3 4
dp[huy/V] b) |Bl[hvg/1p|g|dB]

1.2 1.2

G[G10t(0)]

G[Gtot(o)]

B g B g
(c) |Bl[hvg/1plglds] (d) |B|[hvg/pplglds]
Figure 5.5: conductance G of a topological insulator strip with magnetic barrier in dependency of

. . E2 o
(a) dp (in units of hv,/v) for WEIB P =

(b-d)in dependence of | By | (in units of 2"} for (b)E = —¥2— (¢c)E = —"%_ and (d)E = 10—

kBldlds rglgldg’ wglglds wplildp

6 Induced Superconductivity

According to BCS-theory of superconductivity, named after Bardeen, Cooper and Schrieffer, al-
ready the smallest attractive interaction between electrons in a superconductor leads to an insta-
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bility of the Fermi sea and the the formation of Cooper pairs (pairs of electrons with opposite spin
and momentum), which carry the supercurrent. At the same time the energy spectrum for single

electrons becomes gapped:
| hk?
Ek: = — + A27
2m

where the zero of energy and momentum is placed at the Fermi energy respectively at the Fermi
momentum. [17][18]

If metals or semiconductors are placed in the direct vicinity of a superconductor Cooper pairs can
tunnel into it, leading superconductivity, while the density of cooper pairs in the superconductor
itself decreases. This process is called proximity effect.[19] On the other hand single electrons
with energies below the superconducting gap cannot enter the superconductor. When, however an
electron with an energy below the gap approaches the superconductor an electron of opposite spin
and momentum can be excited, leaving behind a hole with the same spin as the original electron.
The two electrons can now enter the superconductor as a cooper pair, while the hole is left behind
in the metal. Of course the opposite process of a hole recombining with a cooper pair, leaving
behind an electron is possible as well. This leads to a coupling between particle and hole like states.

In this section a model for HgTe/CdTe-quantum well in proximity to a superconductor will be
considered. Experimentally this can be realized by putting an s-wave-superconductor on top of
the quantum well in the x-y-plane. Theoretically it is accomplished by a doubling of the Hilbert
space, since now apart from the original four basis states |E+) and |H=) also the corresponding
hole states |E"+) and |[H"=+) have to be considered. The Hamiltonian without superconductivity
of these hole states is simply a negative copy of the original BHZ-Hamiltonian. To realize the in-
teraction between particle and hole like states coupling terms Ap and Ap are added. Ag couples
between |E+) and |E"+), while Ay does the same between |H=+) and |H"+). (It is assumed that
the superconductive coupling is the same for both Kramer partners.)

This leads to the following 8 x 8-Hamiltonian:

Hg = (e + M(k)s, + Akysgo, + Akysy) 7. + (A4 + A_s,) Ty, (71)

where 7 are the Pauli matrices acting on the particle-hole space. (As a reminder: § are acting
on the conductance band-valence band space and & on the Kramer-Spin space.) A similar Hamil-
tonian (with additional termes to include the effects of Bulk inversion asymmetry and the linear
Rashba spin orbit coupling term ) was used by P.Recher et al. ([22]) to show that HgTe quantum
wells with induced superconductivity can exhibit majorana edge states in presence of a Zeeman
field. [23].

In the basis order |Ey, +) ; |Hy,+) 5 |EF, =) 5 |HY, =) ; |BE1,—) 5 |Hi,—) 5 |ER,+) ;5 [HP,+)

Hk) A 0 0
N T T T (72)
0 0A  —H*(-k)
with
A=1A4 + 5, A (73)

and H (k) the topmost 2 x 2-block of the BHZ-model, as defined in equation 11.
The edge state solutions for the first and third block are already known from earlier sections. The
edge state solutions for the second and fourth, i.e. the hole-like edge states are obtained by setting
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E — —F or simply k, — —k,. The four edge states thus can be written as

_ 0 . [ Yer, ()
|1,€> - (‘)’ ) |1a h> - (‘)’
0 0

(74)

0 0
0 0
2,e) = ; 2,h) = o
| ,6> ‘1’—k1£$,y) ) | ’ > 0

0 \IjkT(x,y)

Note, that as before only one edge of the topological insulator is considered. To obtain an effective
Hamiltonian for the edge states of the topological insulator in proximity of a superconductor the
Hamiltonian is again projected onto these four edge states. The states [1,¢),|1, k), |2,¢€),|2, k), are
a basis in this reduced Hilbert space and the effective Hamiltonian in this basis is

hogk, — |ale™?=

lale™%>  —hugk,

H' = (75)

—hvgk, |ale®e |
lale= e hugk,

where a(k;) = Ay + A_~(k,) and ¢, = arga were defined. It will be shown later, that the
deviation of v(k;) from ~(0) is neglectable for all k, within the bulk gap and thus from here on
a(k;) will be replaced by « := @(0). The Hamiltonian is a block-diagonal matrix consisting of two
Bogoliubov-de-Genne Hammiltonians Hpqg(+k:). There eigenvalues are E' = +, /h2v2k3 + |af?,

i.e. states with E' < |a| are forbidden within the superconducting area. To find the solutions of the
Schrodinger equation inside the superconducting area, we set k, = —i0, and use an exponential

ansatz.
ay qr __ a1 qx
HBdG (a2> (& =F <a2) & (76)

Assuming a; # 0 for one i € 1,2 leads to the secular equation

i\/|CY\2_E2 (77)

= hg

While this forbids the existence of edge states within the proximity of a superconductor (given
their energy is in the gap) interesting physics occur, when the super conductor is placed only on
one half of the topological insulator strip, say x > 0.[20]

6.1 Andreev-reflection

As just described now it is assumed, that a superconductor is only placed above one half of the
HgTe/CdTe device, as displayed in figure 6.1, making the Hamiltonian
Helf for z <0
H
NS { H;ff forz >0 (78)

While the edge states |1) and |4) approaching the superconducting regime from the left cannot
enter the positive part of the z-space, as long as their energy FE is smaller than «, the fact that
Hgf ! couples electron- and hole-like states lets the possibility of Andreev reflection arise, i.e.
an incoming electron is reflected as a hole and thereby creating a new cooper pair within the
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super-
conductor

CdTe

HgTe

CdTe

Figure 6.1: Schematic of a junction of a topological insulator and topological insulator in proximity to
a superconductor-junction (NS-j)unction

E i
Incident electron
— |
Cooper
E, pair .
Gap
- + r
Reflected hole
Metal Superconductor

Figure 6.2: Illustration of Andreev reflection at an NS-junction as taken from [P2]

superconducting area, or an incoming hole is reflected as an electron, while absorbing a cooper
pair. Compare figure 6.1.

To determine the Andreev relection amplitudes the following boundary conditions at z = 0 are
applied to the known solutions for the Schrédinger equation.
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The general solution for x > 0 is
D,-0(z) = (a1]1, e) + az|l, h) + as|2,e) + aq|2,h)) e+ (79)
(bl‘la 6> + b2|17 h> + b3|27 6) + b4|2a h)) et”

For energies |E| < |a| ®,~(z) has to be an evanescent wave, so b; = 0 for all 4.
Then inserting the boundary condition for an incoming electron-like state

11, e) + 741, h) = ®5-4(0) (80)
respectively for an incoming hole state
12, ) + 72, €) = 4 (0) (81)

one sees that ®¢_(0) = [1,¢) +r4|1, k) and ®"_(0) = r%|2,¢) + |2, h).
Reinserting both solutions into the Schrédinger equation HS'f &/ (z) = E®" (x) gives a system
of linear equations for 74 respectively r{ with the solutions

e _ _—ipa <E i vV |a|2 — E2> _ ei(,aa—iarccos(%) (82)

|
| |

and

h __ eigaa ( E i V |a|2 — E2> _ ei¢a—iarccos(i> (83)

— = _ Tal
"4 o] o]

Note that |ri1/ h\ = 1. This means the probability of any state below the superconductor’s energy
gap being reflected is 100%.[20]

For energies E > |a| g becomes imaginary, allowing an incoming states to enter and propagate
within the superconductor. Of course the same incoming state could also still create or annihilate
a Cooper pair, leaving behind a counter propagating hole/electron-state. As a consequence the
solutions for x > 0 have the following form

Puso(e) = (an|l, ) + aal2, ) e + (az|1, h) + az)2,¢€)) e™ (84)

With the same boundary conditions as for |E| < |a| for incoming electron or hole states the

same solutions <I>Z/>h0(x) are obtained. Insertion in the Schrodinger-equation however gives the
slightly different Andreev-reflection amplitudes for particles and holes with energies above the
superconducting gap:

(E JEE_[a]
ry =e P ( VE ~|a? ) (85)

| o

(B JEE |a|
h _ _ipas
Tp=¢€ ¥ <|Oé — 7|a|2 ) (86)

It is easily seen that |r4| < 1 and |r4] = 0. [20]
— 00

Since Andreev reflection changes the sign of a state’s charge as well as its propagation direction
the total charge carried in one direction is doubled. Following this logic the conductivity of the
topological insulator-superconductor-junctions can be written as G(|ra|?) = G(0) (1 + |ral?). In
terms of energy this means, that the conductance is constant at twice its usual value, till E = |a
and then falls monotone converging towards G(0), its value without presence of a superconductor
(or magnetic barrier). The energy dependence is plotted in figure 6.3.
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Figure 6.3: conductance G in units of G(0) of NS-junction in dependency of energy in units of |«|

6.1.1 Andreev bound states

It was seen in the previous section, that edge states (electron- and hole like alike), have a 100%
chance of being Andreev reflected, at the boundary between the undisturbed topological insulator
and on in vicinity of a superconductor, if their energy is below the superconductor’s energy gap.
This leads to the conclusion, that, if superconductors were placed on both ends of the edge, the
edge states were bound in between.

In this section a set up like this is considered. Compare figure 6.4. The superconductors Sy, and
Sr shall be placed in the areas © < 7, < 0 and 0 < zp < z (S-sections). The undisturbed part of
the topological insulator between zj and xzg will be referred to as N-section. The phases of the
superconductors be ¢, and @g, not necessarily the same. The corresponding Andreev-reflection-
amplitudes are 7’2/ f IR Any state with energies below |a| will be Andreev reflected at each border,
hence limiting its motion to a finite area between x;, and =g, yielding to discrete energies for these
so called Andreev bound states.

To calculate these energy levels we define

ar e bL,e

. a - b

a:=| "%, b= | |, (87)
ar,n b
AR,h bR,h

where ar, . is the amplitude of an elctron-like state moving from the left border to the centre of
the N-section, bg p, is a hole-like state moving from the centre to the right border and likewise.

a and b are connected via

0o 0 &, 0 01 00

o o 0 rhiglr - 1 00 0f.

a= e 0 0 0 b and b= 000 117 (88)
0 79 0 0 0010
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Figure 6.4: schematic of a junction consisting of a topological insulator between two topological insulators
in proximity to a superconductor

Combining these two equations equation leads to

b=0. (89)

Under the condition that 57& 0, this leads to

det(4) =0

(1 —=7r5pra.)(1 - TZLTZR) =

—
SRR ety <E VP E? )

| |

o] = feFive/2 £ _ Z~7V|O‘|2_EQ
| |
¥

FE
&arccos | — | == +7n
|| 2
P

oo E = |a|cos (5)

The relation e=*2r°c°s() = 5 — 4, /1 — 72 was exploited in the course of the transformations. [20]
To calculate the charge transferred through this SNS-junction a little different approach is taken.
Assume a small voltage V' is applied to the junction. An electron/hole state thus acquires the
phase +k,L; = +eV L,/v,, while moving from z to xg, with Ly = |xgr — xz| For Andreev-
bound-states to exist the total phase an electron, which is Andreev reflected at one border of the
SNS-junction, i.e. turned into a hole, and then Andreev-reflected again at the other boundary, i.e.
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returned to its prior state, has to be a multiple of 27.

2L

2mn = +p + eV
hvg

2 arccos (@) (90)

where L, is the width of the N-part and the upper sign corresponds to a right moving electron,
while the lower one corresponds to a left moving one.
Solving for F again gives

E eV L,
arccos [ — | = :I:f —nm+ =
|| 2 hwg
where different values of n correspond to different branches of the arccos. Inverting it branchwise
and then putting the parts together, the following result is obtained.

(91)

Keeping L as a finite size we get

E ¢ eVL,
— = cos (2 + g > . (92)

Note that for V = 0 the former result for the energy of the Andreev bound states is reproduced.
Exploiting % is the time ¢7, an electron or a hole need to pass from one of the the boundaries to
the other one equation (92) can be rewritten as

E \%
T = cos (@ + et,;) . (93)

Replacing t;, with an arbitrary time ¢ a time dependent formula for the energy is retrieved.

EE| = cos <; <<p + it)) ‘= cos <; <<P + %ft>> : (94)

Comparing both sides it can be see, that
% _2eV
ot h’
Now, looking at the time derivative of the energy allows it to calculate the current through the
SNS-junction, the so called Josephson-current.[21]

(95)

dE . [ eV \ eV
_elaf [ eV
= I(p,t) = — sin <2 Jr—h t>

There are two things to be noted. First of all unless the phase difference of the two superconduc-
tors is not a multiple of 7 there will be a finite current even without any voltage applied.

If on the other hand a finite voltage is applied to the junction the current is not constant but
changing periodically with time. Also a higher voltage does not imply a higher current here, but
merely change the periodicity.

Note that all the calculations in this section require that |r2/h\2 = 1. This can only be as-
sumed as given for voltages not significantly changing the energy of particle- and hole-like state.
In any other case the energy these states gain whenever propagating back and forth between the
the boundaries would add up giving them enough energy to leave the N-section and enter one of
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the S-sections.

Further note, that the calculated current results from one left or right moving electron state
and the counter propagating hole it is reflected into. This means for the topological insulator
device being watched the current would be 2 times higher, since there are two electron channels
on each edge. Knowing this |a| could be measured by determining the maximum of I(p,t) over
time. This maximum is called the critical current I..

Josephson current and magnetic field

Another way to manipulate the Josephson current is by applying an magnetic field through the
N-section of the device. The effect of it can be calculated by replacing k, = 5= by the generalized

R e/hyon
term k, = Lo T2 ;e 2

, where A is the the vector potential.[4]

Assuming a uniform magnetic field in z-direction A can be chosen so that A, = B.y. Fur-
thermore a magnetic field in z-direction does not influence the transmission of the N-section, since
it only adds a phase to the states. This phase has opposite sign for an particle and the counter
propagating hole it is reflected to, so that it can be ignored completely. The same procedure as
above leads to

\%4 27B, L,
E = |a| cos (9;’Jr(3ht+7T S y>, (97)
where ¢ = h/2e is the magnetic flux quantum.
The resulting current is
elal . (o eV = 2wB.Lgy
I(p, Bo,t) = D gy (£ 4 Sy 4 2T022sY
(p, ) 5 sin (2 + N + " (98)

It can be seen, that the Josephson current also varies periodically with the magnetic field. Mea-
suring the Josephson current for a smoothly varying magnetic field is a possible way to determine
the critical current and thereby |«|.

As it can be seen the current does under influence of a magnetic field not only change period-
ically with time but also with variation of said magnetic field. By measuring the critical current
for a smoothly changed magnetic field, |«| can be determined.

In the experiments described in [24] and [25] this procedure has been used to show the cur-
rent density along the y direction, to verify, that the charge is carried along the edges while the
energy lies within the bulk gap. To understand this, the model has to be expanded a bit.

So far only the Josephson-current through the one-dimensional edge was calculated. To generalize
it to 2 and 3 dimensions it is rewritten as

14 2rB.L (. eV, 2nB;
Lip(p, Bz, t) = Isin (35 * %H W(by) = 1.9 (ez(zw Wt 2 Ly)) (99)

Interpreting a higher dimensional device as a many 1-dimensional channels in direct proximity to
each other the current becomes the sum over all these channels or, by replacing the critical current
by a critical current density J. the integral over the cross section of the device. This means the
current through a 2d-set-up becomes

00 2B, L
20 :3/ Jo(y) exp {z <<§ + %t + W(Z)yﬂ dy. (100)

— 00
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. The Josephson current in 2- dimensional devices is the imaginary part of the Fourier-transformation
of the critical current density J. through the junction. The new critical current I, is the maximal
current, hence the absolute value of the Fourier-transformation. For our topological insulator
device this means

I(B.) = I?P = \ | nwen i ()] dy‘ (101)

In reverse this gives added information about the form of the critical current density by measuring
the critical current.

Exactly this method was used in the experimental papers [24] and [25] to examine the current
density in a Josephson junction consisting of a HgTe quantum well with two superconductors on
top of each end of the 2d-device. The measurements were taken for different chemical potentials,
within and outside of the bulk energy gap, varied through different gate voltages.

How the form of the current density is obtained from these measurements shall be elaborated
here at two examples.

If for example the energy of the states lies within the bulk gap of the topological insulator,
hence charge should be only carried along the edges, what will be modelled by the current density
Joor = el (5(y — L/2) + 6(y + L/2)), the net critical current results in

h
2 B.L,L
1997 (B,) = 67204 cos<7r </>y ) (102)

Approximating the edge states with d-functions is of course only appropriate for wide strips, i.e.
large L, nevertheless the measurements of [24] and [25] show the predicted sine-like behaviour.
For energies outside of the gap a rather uniform current density throughout junction is expected
and therefore it is modelled here, very simplified again, as a rectangular function:

JMP(By) = Jorect (%) Calculating the net critical current for this density gives a Frauenhofer-
pattern:
sin (7B, LyL/¢)

IM99%(B) = J,
?(B2) = Jo 7B.L,L]¢

(103)

Again this mirrors the experimental results from [24] and [25].

7 Combination of magnetic & superconducting barrier

Previous sections discussed the influence of magnetic barriers as well as different combinations of
superconducting junctions on the conductance ot an HgTe/CdTe-quantum well. In this section
though both shall be combined. The magnetic barrier be extended from x = 0 to x = zp > 0 and
the superconducting section shall range from x = xgzpd to oco.

The projection in the edge states of the Hamiltonian has the form

HeIT for <0
Hgff for 0<zx<ap

eff — ,
Hnmns Heff fO’I" rp <x<Tg (104)
H;f I for zg<uw
To calculate the conductivity G along the edge, the following vectors are defined.
Qe be,(—
s e, — > be,—
a* = ’ ; b* == ’ , 105
Qp, bh,e ( )

ap,— bh,—>
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Figure 7.1: Schematic image of the NMNS-structure

where a.p, , is the amplitude of an electron-/hole- like state approaching the magnetic barrier
from the left /right and b,/ ., is the amplitude of an electron-/hole- like state veering away from
the magnetic barrier toward the left /right.(compare figure (7.1))

The conductivity can thus be calculated as
e? 2 2 2 2
G == (lac.cl” + [bn,c[* = lan,e|* = Jbe.L ") (106)

The relations between the two vectors @ and b are given by

€ €
re o,

N . aes _ (0 7Y (bess
br = 7":% t%, as (ahﬁ>_(ri‘ 0 bh— )’ (107)

t T

— —

where r¢/" and t¢/" are the reflection and transmission amplitudes for electron- and hole-like
states approaching the magnetic barrier from the left/right and ri/ " is the Andreev-reflection
amplitude for electron-/hole-like states approaching the superconducting domain. Altogether these
6 equations can be written as

re 0 0 rhth\ (e
- t¢ 0 0 rheh be.
b= E)_ reth re AO_> ae/_> ’ (108)
AV— — hy+—
0 rorh te 0 b, —

From equation (108), it will be possible to determine b. . and b, . as functions of a. . and aj,
and thus reduce the conductivity to a function of a. . and aj  as well.

Inserting
be,—s = % ae . + 157" by s, (109)
into
bh s = 157%be  +t" ap (59) rare, (t_ae + rﬁribhﬁ) +t"ap .,
leads to

P Qe+t an,

1— rjrﬁri rh,

: (110)

bh,—> =
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and finally to

(S
TAT 5 0e « + Qp

1— rirﬁrﬁ,re_,

(111)

be,(—(Ea Qe+ ah,<—) = Tle+ T T,}étabh,q (1T0) T Ce + Tzn—te
Equation (108) is invariant under exchange of e and h and thus by, « (E, ae,, an, ) can be obtained
from b (E, ae,«,ap ) by interchanging e and h:

bh,<—(E7ae,<—7ah,<—) = be,(—(Eaah,<—7ae,<—) (112)

The conductivity can thus be calculated as

G(Eaae,<—7ah,<—) = (|ae,<—‘2 + \bh#_(E,ae’(_,ah,(_)\Q - ‘ah,<—‘2 - |be,<—(Ea ae,<—;ah,<—)|2)

(113)

<
h

Note that G(E, ae,1,an,) = —G(E, an 1, ae 1), i.e. the conductivity changes sign, when the charge
transport in the undisturbed topological insulator is carried out by holes instead of particles.
Assuming the charge in the undisturbed regime being carried mainly by electrons, i.e. a.r =1
and ap, = 0, G(E,|B|) := G(E,1,0) will be referred to as the conductivity of the system.
Obviously it will depend on the strength of the magnetic field | B|, which is already implied here.
All reflection and transmission amplitudes needed for the calculation are known from previous
sections and thus be simply inserted.

For example in the limit £ = 0 the conductivity is

1 1
G O, B =1+ — = + 11— = -
(0, | H|) cosh? (NBg;‘fHIIB) n sinh2 (MBQ;I:LIjJIxB) cosh? (uBg’lbff;|\xB> + sinh2 (usgi\ilj;\\ma)
=|bp, |2 =be,
(114)

It is plotted in figure 7.2. Note that while the conductivity for |B)| = 0 is twice as high as the
conductivity of a undisturbed topological insulator, it also decays faster with higher magnetic
fields than a device with only a magnetic barrier and no superconducting regime attached to it.
This can for example be seen by comparing figure 7.2 and figure 5.3.

8 Determination of Ag, Ay, g & g

Previous sections, in particular the sections 5 and 6 introduced different set ups, technically allow-
ing it to determine the effective g-factor g, transferring a coupling between the counter propagating
Kramer partners in the presence of a magnetic field B, and effective superconducting order param-
eter «, transferring a coupling between counter propagating electron- and hole-like edge states.
Both can be written in a similar way in terms of the respective subband parameters Ag, Ay, gg
and gg. The aim of this chapter will be to survey, whether said measurements of § and « under
variation of any parameters can be used to access information about Ag, Ay, gr and gg.

In full length the two coupling constants can written as

g= %(9E+9H)+'7% (98 — 9m) == g9+ +79- (115)
QZ%(AE—‘FAH)—‘F’Y%(AE—AH) = AJF-‘F’}/A,, (116)

where
_ 1 — w* (ks )w(Fks) 117
! VL Jw(Ek)2) (1 + [w(Fka)]?) (H)
wik,) Akt ) (118)

 E+M+(B-D)(\ —k2)
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Figure 7.2: Conductivity G in units of G in dependency of |B| in units of Aivy/up|§||zs| for E=0
Both |a| and § can thus be understood as a function of v, where g4 = (v = 0) and and g_ = 0,§

and likewise for Ay. Of course after knowing g+ or Ay gg/ g respectively Ap /g are easy to
obtain. In other words: After measuring the two effective quantities § or a for different values of
~ a linear fit would be enough to determine the subband parameters. Of course only the absolute
values of g and « a accessible through measurement, however it will be shown shortly, that - itself
is a real number and therefore the two effective parameters are as well, so that this is in fact is no
restriction at all.

The urging question is now, how can 7 be varied to obtain measurements for different values
of it. As v depends on the edge state momentum k,, the chemical potential C and the BHZ-
parameters A, B, D and M the following sections will be devoted to separately vary their value in
order to check how high their actual influence on + is.

All variations will be carried out to first order in the particular parameter, while the remaining
parameters remain constant. Since the expressions get to excessive the variations will be done for
several sets of BHZ-parameters(compare 1) for each parameter around its unvaried value in the
corresponding set. Since the sample parameters are rather chosen rather randomly, this procedure
of course holds sure enough some uncertainty and thus rather gives an overview over the influence
of the parameter than claiming to be 100% reliable for all sets of parameters.

parameter set di() | Ag(eV) | Bo(eV?) | Do(eV) | My(eV)
1 61 3.78 -55.3 -37.8 -0.00015
2 70 3.65 -68.6 -51.2 -0.01
3 70 3.65 -70.6 -53.2 -0.001
4 n.a. 3.73 -85.7 -68.2 -0.000035
5(topologically trivial) | 55 3.87 -48 -30.6 0.009

Table 2: BHZ- parameters as taken from [9],[11] and [26]

Variation of well thickness d

The parameters, which can be varied most easily are the chemical potential C and the momentum
k.. C can be varied with the application of a gate voltage and k, by applying different voltages
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to each end of the edge of the quantum well. Variation ot the two parameters however show that
they have little to no influence on the values of ~, as long as the changes are small enough to keep
the total energy within the bulk gap, which is necessary to maintain the existence of edge states.

But comparing ~y for different sets of parameters leads to the assumption, that at least
C=ky=0
one of them must have a notable influence.

This means measurements of alpha and ¢ with varying parameters could actually be used to
deduce the values of g/ and Ag/p.

All of the parameters A, B, D, M depend on the geometry of the topological insulator, namely the
thickness d of the quantum well, and could be calculated numerically. [11]

A variation of these parameters hence would implicitly mean a variation of d according to

d
L

o (6d) + O((6d)?)

d=dy
ieq,  \Ow\dAdd " 9B od ' 9D ad ' OM ad

Y=Y

+0((6d)%)  (119)
da=dy

=

Since the derivatives in d are not analytically accessible the following definition is made instead.

%5(1(1 = 5Pz = R - Pi’o, (120)

for P, € {A, B, D, M}. Inserting this in 119 leads to
Oy [ow
d1=dg Oow \ 0A

The evaluated terms for the parameter sets from table 2 are displayed in table 3. This values

ow
0A+ —
A=Ay OB

ow
0B+ —
B=B, oD

ow
0D+ — oM + O(6P6P;)
D=D, OM |y, )) !

_|_

(121)

ow Tw Tw Tw
7’dq:dg 9Ala=A, | 9BlB=B, | 9D ‘D:DO oM |M:MO

1] -045 [39-107° | —1.8-102 | 2.6-10~2 0.48

21 -055 [1.7-1073] 1.7-107% | 2.3-1072 0.31

31 -056 [24-107%] 1.7-1072 [ 2.2-1072 0.43

41 -063 [ 71-10%| -15-1072[1.9-102 0.38

Table 3: Variation in various parameters for parameter sets 1-3

give at least a little insight on the influence the various parameters have on . §A for example
would have to be of magnitude 10° to 10% to change ~ significantly. Comparing values of A at
different well-thickness (table 2) this is surely not to expect and therefore deviation caused by A
are assumably neglectable.

In terms of B and D things look differently. Changes in B and D of magnitude 10' already have
measurable influence on . Variations of this size can be obtained by tuning the well thickness by
several , as seen in table 2.

Concerning the mass term M even variation of 10~eV would be noticeable. Looking at table 2
with this in mind, mass-changes of this magnitude seem possible.

Conclusion

As mentioned before only changes in B, D and M seem to have measurable influence on ~, while
variations of A, C' and k, very little to no influence, as long as § and « are measured via transport
properties of the edge channels, as suggested in previous sections.
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The influential parameter B, D and M all depend on the thickness d of the quantum well(,as
well as A). Hence obtaining values of § and « for different values of v would require the growth
of various HgTe/CdTe-quantum wells of different thickness d. Since the suggested transport ex-
periments to determine the coupling constants require edge states, and these only exist in the
inverted regime d > d. =~ 6.3nm is required, while d still has to be small enough to maintain the
2-dimensional character of the system.

Concerning the actual measurement of the coupling constants the measurement of the Josephson
current through a SNS-junction seems to be most promising to determine «, while g is probably
achieved easiest from the decay of conductivity for a smoothly increasing magnetic barrier.
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