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Abstract:

The edge states of the 2-dimensional time reversal invariant topological insulator HgTe/CdTe
in the inverted regime, were reproduced. Such a topological insulator is described by the ef-
fective four-band BHZ(Bernevig-Hughes-Zhang)-model, which reveals edge states una�ected
by back scattering for certain choices of parameters.
Further the in�uence of a magnetic barrier and induced superconductivity on the edge states
was examined. Namely the e�ective g-factor ĝ and the e�ective superconducting order pa-
rameter α where introduced.
Finally a way is suggested to experimentally gain information about the g-factors gE and gH
and about the superconducting order parameters ∆E and ∆H of the bands of the BHZ-model.
gE and gH are coupling the four Bands of the BHZ-model in presence of a magnetic �eld,
while ∆E and ∆H couple electrons in these bands to their hole-partners, if the topological
insulator is in proximity to a superconductor.

Zusammenfassung:

Die Randzustände des 2-dimensionalen zeitumkehr-invarianten topologischen Isolators
HgTe/CdTe mit invertierter Bandstruktur wurden reproduziert. Besagter topologischer Iso-
lator wird durch das e�ektive vier-Band BHZ(Bernevig-Hughes-Zhang)-Model beschrieben,
welches topologische Randzustände für bestimmte Parameterwerte zulässt.
Ferner wurde der Ein�uss einer magnetischen Bariere sowie induzierte Supraleitfähigkeit auf
besagte Randzustände untersucht. Insbesondere wurden der e�ektive g-Faktor ĝ sowie der
e�ektive (Supraleitungs-) Ordnungs-Parameter α eingeführt.
Zu guter Letzt wird ein Vorschlag zur experimentellen Bestimmung der Subband g-Faktoren
gE und gH sowie der Subband Ordnungs Parameter ∆E und ∆H aus den jeweiligen e�ektiven
Gröÿen ĝ und α unterbreitet. gE und gH vermitteln in Anwesenheit eines magnetischen Feldes
eine lineare Kopplung zwischen den 4 Bändern des BHZ-Models, während ∆E und ∆H eine
Kopplung zwischen Elektronen dieser 4 Bänder und deren Loch-Partner vermitteln, falls sich
der topologische Isolator in der Nähe eines Supraleiters be�ndet.
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1 Introduction

Topological insulators are a novel state of matter �rst predicted in 1987 [1] in 2D-quantum wells
of HgTe between CdTe and were �rst experimentally observed in 2007[2]. Since then topological
states were predicted and observed in several other materials as well including 3D systems. Here
we will focus in 2D-systems.
These so called topologically insulating states are characterized by the existence of symmetry
protected conducting and gapless states on its surface , while its interior resembles a classical
insulator, i.e. the Fermi level falls between the valence and the conductance band. These gapless
states, behaving like massless relativistic particles, underlie spin-momentum locking protected by
time reversal symmetry. Next to possible applications in spintronics or quantum computation, the
possible occurrence of Majorana quasi-particles on the surface of topological insulators in proxim-
ity to a superconductor or topological superconductors has been a driving motor of the studies of
topological insulators over the last decade.

This thesis will keep focus on the 2-dimensional topological insulator �rst predicted and experi-
mentally realized: a HgTe/CdTe quantum well. After a short introduction to topological insulators
in general an e�ective Model describing this set up will be introduced and it will be shown how it
leads to the emergence of the helical edge states characteristic for a topological insulator. In the
subsequent chapters the in�uence of the breaking of time reversal symmetry by a magnetic barrier
and the e�ects of di�erent set ups of superconductors in direct proximity to the topological insu-
lator will be discussed. In the �nal chapter an experimental way will be suggested to determine
the subband g-factors and superconducting order parameters of the model.

2 Topological insulators

This section will be devoted to explaining, what topological insulators are. As the name correctly
suggest, that they are a kind of band insulator. This general term will be exempli�ed in the next
subsection, while the di�erence between topological insulators and non-topological, or topologically
trivial, insulators will be elaborated subsequently.

2.1 Band insulators

Exploiting the translational symmetry of a crystal the Hamiltonian of the system can be reduced
to and solved on one unit cell of the crystal. These solutions are the so-called Bloch states |un(k)〉,
depending on the crystal momentum k, which is de�ned in the Brillouin zone. The associated
eigenvalues En(k) de�ne the band structure of the system. Due to the fermionic nature of elec-
trons (Pauli principle) all states up to the chemical potential (,Fermi niveau,) are occupied at zero
temperature.

Since fully occupied bands do not contribute to charge transport, insulators are characterized
by a totally occupied valence band and an empty conductance band, separated by an energy gap
E∆[3]. The same applies of course for semiconductors, which seem to be indistinguishable from
insulators except for the size of E∆. In fact it is possible to manipulate the Hamiltonians contin-
uously, turning an insulator's Hamiltonian into a semiconductor's and vice versa, without closing
the gap. We call them topologically equivalent.
In a model reducing the band structure to the valence and conducting band only, i.e. ignoring
occupied bands below the valence band and empty bands above the conducting band, all cus-
tomary insulators are topologically equivalent. They are also equivalent to the vacuum, as it
is described in Dirac's relativistic quantum theory. With the in�nite reservoir of particles with
negative energy(Dirac sea), corresponding to the valence band, the energy needed to create an
electron and a positron being E∆ and states with positive energy corresponding to the conduc-
tance band(compare �gure 2.1)[4].
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All insulators and semiconductors equivalent to the vacuum will henceforth be called topologically
trivial. (compare: [5],[6])

(a) (b)

(c)

Figure 2.1: Qualitative band structure for the vacuum (a), a semiconductor (b) and a metal (c)

The introduction of the term "topologically trivial" already implies, that there will be topo-
logically non-trivial insulators as well, later simply referred to as "topological insulators". They
will be characterized by an insulating bulk and metallic behaviour at the surface. Examples will
be given subsequently.

2.2 Quantum Hall e�ect

The quantum Hall e�ect is obviously the quantum mechanical analogue to the classical hall e�ect.
It can be observed in two-dimensional electron systems at low temperatures and high magnetic
�elds. It manifests itself in the quantisation of the hall conductance

σ = n
e2

~
:= nG0; n ∈ N0;

To understand how this is an example for a topological non trivial state it makes sense to take a
look at the Hamiltonian of a electron con�ned to the x-y-plane in the presence of a magnetic �eld
~B generated by the vector potential ~A.

HB
x,y =

1

2m

(
~p+ e ~A

)2

:=
1

2m

(
Π2
x + Π2

y

)
, (1)
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where ~p is the electron's momentum [7]. In the Landau gauge, ~AL = −yB (1, 0, 0) it is straight-
forward to show, that HB

x,y can be rewritten as

HB
x,y = ~ωc

(
a†a+

1

2

)
, (2)

where

a =
lB√
2~

(Πx − iΠy); a† =
lB√
2~

(Πx + iΠy)

are ladder operators with [a, a†] = 1, lB =
√
~/eB is the magnetic length and ωc = ~/ml2B the

cyclotron frequency. The corresponding energy eigenvalues to HB
x,y and thus the band structure

is given by

Em = ~ωc
(
m+

1

2

)
; m ∈ N0. (3)

These energy levels are called Landau-levels. Semi-classically this can be understood as electrons
being forced on a circular trajectories with cyclotron frequency ωc by the magnetic �eld.
If now m bands are �lled with electrons, once again an energy gap separates the occupied bands
from the empty bands, like in the case of an insulator. However unlike a conventional insulator
the quantum hall system is characterized by the �nite Hall-conductivity. This implies that the
two systems cannot be equivalent, i.e. their Hamiltonians cannot be continuously turned into each
other without closing the gap, which would lead to metallic behaviour.[5][6]

It might seem contradictory, that a system with the bulk band structure of an insulator comes
with a �nite conductivity. It will turn out that the charge in the quantum Hall system is carried
along the edges of the system. Since the quantum Hall system requires a Hall voltage applied to
it, it is impossible to create a quantum Hall system without edges. This applied voltage however
bends the m occupied Landau-levels on one edge over the Fermi level. Laughlin's gauge argu-
ment(compare [7] ch. 6.1) proofs, that a �nite current leads to m occupied momenta above the
Fermi level at one edge and m empty momenta below the Fermi level at the other edge, manifested
m charge carrying states on either edge, each contributing to the conductivity of the edge with G0.
In other words there are m open channels for charge transport on each edge. States on di�erent
edges counter propagate. Qualitatively this can be understood in a classical way. In the bulk
electrons orbit in circles leading to the Landau levels. At the boundaries however they cannot
complete their circular trajectories, but are backscattered instead, which causes them to bounce
along the edges(compare �gure (2.2)). The counter-propagating, so-called chiral edge states will
be characteristic for 2D topological insulators in general.

So far it was discussed, that the vacuum and a quantum Hall system belong to di�erent topo-
logical classes. In fact it will turn out, that systems with di�erent Hall conductivity σ belong
to di�erent topological classes as well. This seems clear, since the Hall conductivity is related to
the number of Landau levels below the Fermi energy. When changing the Hall conductivity of a
system from mG0 to (m + 1)G0 by continuously altering the Hamiltonian the gap between the
mth and (m+ 1)th Landau level will close and a new one will appear between the (m+ 1)th and
the (m+ 2)th, i.e. the topological class changed.
More quantitatively it can be proven, that, if the Hall conductivity σ is the m-fold of the conduc-
tivity quantum G0, then m is the �rst Chern number of the System.(compare [7] ch. 3)

m :=
∑

filledBands

1

2π

∫
T2

fn ∈ Z, (4)
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Figure 2.2: Skipping orbit picture or classical explanation for edge current in a quantum hall system

where f = ∂
∂kx
〈un(~k)|−i∂∂ky

|un(~k〉) − ∂
∂ky
〈un(~k)|−i∂∂kx

|un(~k〉) is the Berry curvature, which will be

introduced in 2.2, and T2 is the Brillouin zone, which has due to its periodicity the topological
properties of a 2-Torus for a 2-dimensional system. The Chern number gives a distinction between
topological classes of vector-bundles, here the Hilbert space vectors, eigenvectors of the Hamilto-
nian, on a smooth manifold, here the Brillouin zone. Di�erent Chern numbers disprove topological
equivalence.[8] The opposite is not the case, nevertheless we will di�erentiate di�erent topological
classes only by their Chern number, i.e. their Hall conductivity in 2D-systems.

Berry phase, Berry connection and Berry curvature

It was stated priorly, that a system's Hall conductance is proportional to the �rst Chern number,
which in turn is the 2πth part of the Berry Phase over a closed path in the Brillouin zone. The
terminus Berry-phase will be intruduced in this section.

Consider a general Hamiltonian H(~κ) depending on a set of parameters ~κ = (κ1(t), κ2(t), ...)
with normalized eigenstates |n(~κ)〉 and pairwise di�erent eigenvalues En(~κ) (For the calculation

of the Hall conductance these will be the 2,3-dimensional wave vector ~k and the eigenstates will
be the Bloch states.)
The eigenstates of H(~κ) will remain eigenstate even if ~κ(t) is altered smoothly or in other words
moved along a continuous path C in the parameter space. This means though, that an state
|n(~κ(0)〉) could have only achieved a phase ϑ(t) during this altering of ~κ(t). The time evolution
of said state is thereby given by

H(~κ(t))e−iϑ(t)|n(~κ(t))〉 = i~
d

dt
e−iϑ(t)|n(~κ(t))〉. (5)

Multiplication from the left with the bra-state 〈n(~κ(t)) leads to a di�erential equation for the
phase ϑ(t) with solution

ϑ(t) =
1

~

∫ t

t0

En(~κ(τ))dτ − i
∫ t

t0

〈n(~κ(τ))| d
dτ
|n(~κ(τ))〉dτ︸ ︷︷ ︸

:=γn

(6)

The �rst term is the well known energy dependant time evolution, while the second term, de�ned
as γn is the Berry-phase.
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Further calculation shows, that the Berry phase is in fact time independent.

γn = i

∫ t

t0

〈n(~κ(τ))| ∂
∂~κ
|n(~κ(τ))〉d~κ

dτ
dτ = i

∫
C

〈n(~κ(τ))| ∂
∂~κ
|n(~κ(τ))〉︸ ︷︷ ︸

:=An(~κ)

d~κ (7)

An(κ) is called the Berry connection or Berry vector potential. The independence of time combined
with the degeneracy of the eigenstate we took for granted, leads to the conclusion that if the path C
in the parameter space is a closed loop the phase acquired must be a multiple of 2π, i.e. γn = 2πm.

Considering a closed loop and a 3-dimensional parameter space allows to apply Stoke's theorem
on the last equation yielding to

γn = i

∫
d~S (∇~κ ×An(~κ)) = i

∫ 3∑
i,j,k=1

dSiεijk
∂

∂κj
〈n(~κ)| ∂

∂κk
|n(~κ)〉︸ ︷︷ ︸

:=fn

,

where d~S is the surface of the parameter space and fn is the Berry curvature. In the special case
of ~κ = ~k ∂~S is the Brillouin zone, i.e. a Torus. For a system in the x− y-plane, hence kz = 0 and
∂
∂kz

= 0 the Berry curvature has the the same form as stated priorly.[6][7]

3 Time reversal symmetry

Time reversal symmetry is an important concept in the realization of topological insulators, espe-
cially concerning the quantum spin Hall insulator, which has zero net Hall conductance, but non
vanishing spin transport through the edge channels.

The time reversal operator T reverses the �ow of time, i.e.

T : t→ −t

Signs of operators including odd orders of time explicitly as well as operators including time
implicitly, as for example in terms of the time derivative, are changed as well. The other operators
remain unchanged. This means, that T will change the sign of the momentum operator p̂, while
the position operator x̂ remains invariant under time reversal. From this a representation of T for
spinless particles can be deduced.

T [x̂, p̂]T−1 = −i~ = [x̂, p̂]
∗

⇒ T = K,

with K being the operator of complex conjugation.

For spinful particles it has to be considered, that the spin Ŝ, as internal angular momentum,
has to be odd under time reversal, i.e. T ŜT−1 = −Ŝ, which can be understood as a spin-�ip or a
rotation by π around any axis in spin space. Therefore one representation can be given as

T = e−iπŜy/~K

For spin- 1
2 -particles with Ŝ = ~

2 (σx, σy, σz), it leads to

T = −iσyK

Note in particular, that T 2 = −1. The last fact allows it to proof Kramer's-theorem, which states,
that in every time reversal invariant system with an odd number of half-integer spin particles there
are two or more degenerate states. [7][12]
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Proof. Be Ĥ the Hamiltonian of a time reversal invariant system, i.e.
[
Ĥ, T

]
= 0, and |h〉 an

already normalized eigenvector to the eigenvalue h.
This implies, that T |h〉 is an eigenvector to the same eigenvalue.
If c|h〉 6= T |h〉 for c ∈ C, there are at least two degenerate states as stated by the theorem.

Hence assume: ∃c ∈ C with

c|h〉 = T |h〉 (8)

Multiplication with 〈h|T yields using T 2 = −1 in

−1 = 〈h|T 2|h〉 = 〈h|Tc|h〉 = 〈h|c∗T |h〉 = |c|2 (9)

Since they are related via time reversal each per of Kramer-partners have opposite spin.
Kramer's theorem has remarkable consequences for the Hall conductance of time reversal invariant
systems. Exploiting, that T † = −T it can be seen rather quickly, that the berry curvature
fn(−~k) = −fn(~k) of the Kramer partners have opposite sign. Since Kramer's theorem states, that
these states are degenerate they are either both occupied or both empty, i.e. the Hall conductance
is zero.
If the Hall conductivity for each Kramer partner individually is not zero, this leads to an interesting
situation called a Quantum spin Hall insulator. State-wise non zero Hall conductivity implies open
edge channels for each partner, since due to time reversal symmetry these edge states are counter
propagating, this leads evident from the vanishing net Hall conductivity to a zero net charge
transport as well. Then again, since the edge states do not only di�er in momentum, but also in
their spin quantum number, there is a net spin transport along the edges.

4 BHZ-Model

The discussion of the quantum Hall e�ect as topological property leads to the question, whether
topologically non trivial states can only be obtained in presence of a magnetic �eld. The answer
is no, in fact systems described by a simple Dirac Hamiltonian HD = ~d~σ with ~d = (kx, ky,M)
exhibit for certain values of M topological edge states carrying charge despite their bulk energy
gap.[7]
In this section the existence of edge states will be shown exemplary for a slightly modi�ed Dirac
Hamiltonian describing HgTe/CdTe quantum wells, the �rst topological insulator to be experi-
mentally realized.[2]

These quantum wells consist of a thin layer of HgTe of thickness d between to layers of CdTe. d
can be small enough for the whole system to be viewed as 2-dimensional. (In the following a 2
dimensional system in the x − y−plane is assumed.Compare 4.1.) The e�ective in- plane band
structure of both materials is described by the subbands E1, H1, each double degenerated due to
time reversal symmetry. The other bands are far from the other two, why it is neglected, leaving
an e�ective four-band model.Compare �gure 4.2

The order of these subbands in HgTe is inverted compared to CdTe. In the quantum well,
however, it depends on the thickness of the well, whether the inverted regime is dominant or not.
For thickness d > dC = 6.3 nm it is inverted, i.e. H1 > E1,(Compare �g 5.1.) It turns out that
the topologically non trivial state emerges in the inverted structure.

The four-band Hamiltonian will be written in the basis order |E1,+〉, |H1,+〉, |E1,−〉, |H1,−〉,
where ± refers to the two Kramer partners on each band. Due to the time reversal invariance
of the system the Kramer partners do not couple, hence the o�- diagonal 2 × 2-blocks have to
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Figure 4.1: schematic of the 2D topological insulator HgTe between layers of CdTe

Figure 4.2: Energy of the quantum well in dependency of its thickness d (taken from [P1])

be zero. (The crystal structure of HgTe is not inversion invariant, which would in reality lead
to o� diagonal bulk inversion asymmetry terms, which however are very small why they will be
neglected here, since the do not a�ect the topological mass term.[9])
The remaining diagonal block will be the time reversed version of the upper one.

E1- and H1-bands di�er in parity and have a di�erence of 1 in their orbital quantum number,
H1 is p-like and E1 is s-like. The the following Hamiltonian, which was �rst introduced by
Bernevig, Hughes and Zhang (BHZ):(compare [10][7][9])

H(k) =

(
H(k) 0

0 H∗(−k)

)
(10)

where

H(k) = εI2 + ~d~s (11)

and

ε = C −D(k2
x + k2

y) (12)

~d =

 Akx
Aky
M(k)

 (13)

M(k) = M −B(k2
x + k2

y) (14)
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~s = (s1, s2, s3) are the Pauli-Matrices acting on the E1 −H1-space. The parameters A,B,D,M
depend on the geometry (/thickness) of the quantum well. They can be calculated numerically
k · p-theory.[11]
C is the chemical potential determined by a gate voltage.

4.1 Edge states in BHZ-model

The bulk energy spectrum of this Hamiltonian is

E± = C −D(k2
x + k2

y)±
√

(M −B(k2
x + k2

y)2 +A2(k2
x + k2

y), (15)

hence it is gapped. This means that the system is an insulator in the bulk. However as we will
show edge states can exist. To see if they actually occur in this kind of system the Schrödinger
equation has to be solved. Since the Hamiltonian is block diagonal the eigenvalue problem of each
block can be solved separately. Conveniently all blocks are related either through time reversal or
opposite signs of energy, so that after retrieving the solution for the topmost block the solutions
for the other blocks can be derived from it.

For this reason all that remains to solve is the 2-dimensional problem

H(k)Ψ = H(k)

(
Ψ1

Ψ2

)
= E

(
Ψ1

Ψ2

)
(16)

The chemical potential C is irrelevant for the calculations why it is set to zero for the moment. It
can be reintroduced later by the replacement E → E − C.
Assuming an insulator strip with an edge along y = 0 and the other one far away at y = L→∞
and open boundary conditions, i.e. Ψ(y = 0) = 0 = Ψ(y = L), ky = py/~ hast to be replaced
by the momentum operator −i∂y. The translation invariance along the x-direction be preserved
(periodic boundary conditions), i.e. kx remains a good quantum number and Ψ(x) ∝ eikx .
Thus the Schrödinger equation becomes the following di�erential equation:

⇔
(
M − (B +D)(k2

x − ∂2
y)− E A(kx − ∂y)

A(kx + ∂y) −M + (B −D)(k2
x − ∂2

y)− E

)(
Ψ1

Ψ2

)
= 0 (17)

The Ansatz Ψ(x, y) = eikxeλy
(
φ+

φ−

)
, leads to

(
M − (B +D)(k2

x − λ2)− E A(kx − λ)
A(kx + λ) −M + (B −D)(k2

x − λ2)− E

)(
φ1

φ2

)
= 0 (18)

If non-zero solutions exist the determinant of this matrix has to be zero.∣∣∣∣M − (B +D)(k2
x − λ2)− E A(kx − λ)

A(kx + λ) −M + (B −D)(k2
x − λ2)− E

∣∣∣∣ = 0 (19)

This is a quadratic equation in λ2, with the following solutions:

λ2
1,2 = k2

x + F ±

√
F 2 − (M2 − E2)

B+B−
. (20)

In the last step F := A2−2(MB+ED)
B2−D2 was introduced.



SUPERCONDUCTOR HETEROSTRUCTURES 9

Symmetric conduction and valence bands: D=0

To illustrate the procedure the edge states will be calculated for the case D = 0, kx ≈ 0 and
E ≈ 0. The steps in this special case are very similar to the general case, so that this will help to
understand the more complex version as well. [9]

This simpli�cation allows it to display λ1,2 as

λ2
1,2 =

1

4B2

(
A±

√
A2 − 4MB

)2

(21)

⇔ λ1,2 =± 1

2B

(
A±

√
A2 − 4MB

)
(22)

More interesting than the simpli�cation of λ1,2 though, is that equation (18) can now be rearranged
as follows.

(M +Bλ2
1,2) isysz︸ ︷︷ ︸

=sx

(
φ1

φ2

)
= Aλ1,2

(
φ1

φ2

)
(23)

From which it can be seen that

(
φ1

φ2

)
has to be an eigenstate of sx and thus after normalisation

either

φ+ = 1√
2

(
1
1

)
or φ− = 1√

2

(
1
−1

)
.

By solving equation (23) as a quadratic equation for λ1,2 and comparing it to the prior result, it
can additionally be seen, that φ+ is the solution for +λ1,2 and φ− is the solution for −λ1,2.

Hence there are four linear independent solutions e±λ1,2φ± for the Schrödinger equation , i.e.
the general solution is a linear combination of them

Ψ(x, y) =
(
(a+e

λ1y + b+e
λ2y)φ+ + (a+e

−λ1y + b+e
−λ2y)φ−

)
eikx (24)

The normalizability of Ψ(x, y) implies, that two of the four coe�cients have to be zero. The
remaining two coe�cients can be determined by imposing the boundary conditions Ψ(x, 0) = 0.
It can be di�erentiated between to cases: either the real parts of λ1 and λ2 have the same sign or
the opposite sign.
In the second case all four coe�cients are zero.This is the topologically trivial state, because no
edge states exist. Looking at λ1,2 one can see that this occurs for M

B < 0.

For M
B > 0 it turns out, that a+ = b+ = 0 for <λ1,2 < 0 and a− = b− = 0 for <λ1,2 > 0 or

else Ψ(x, y) could not be normalized for large L. Furthermore the boundary condition at y = 0
requires for the remaining two coe�cients a± = −b±.

The gathered information leads to the following form of Ψ(0, y):

Ψ±kx(x, y) := eikxxΨ±(0, y) =
a±√

2
eikxx

(
e±λ1y − e±λ2y

)︸ ︷︷ ︸
:=f±(y)

(
1
±1

)
, (25)

where the upper sign belongs to the case <λ1,2 < 0, realized for A/B < 0 and the lower sign belongs

to <λ1,2 > 0 for A/B > 0.The term a± is a normalisation constant with 1
|a±|2 =

∫ L→∞
0

|f±(y)|2.

To see, that this state is indeed concentrated on the edge of the insulator strip its absolute square
is plotted in �gure 4.3 for an exemplary set of A,B,M . It can be seen that the wave function is
approximately limited to 0 < y < 200. The thickness of the quantum well is d > dc ≈ 61. Since
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Figure 4.3: probability distribution of edge states for A = 3.78eV ,B = −55eV 2, M = −0.00015eV and
quantum well thickness d = 61., compare: [9]

the system is supposed to be 2-dimensional it is safe to assume, that the width L of the strip is
much larger than its thickness (L >> d) and thus the name edge state is appropriate.
The approximate penetration depth of the general edge states is given by its characteristic length
lc = |max{λ1,2}|−1. To obtain the dispersion relation of the edge state its energy expectancy
value at arbitrary x can be calculated. This corresponds to the projection of topmost block of the
bulk Hamiltonian onto its eigenstate.

〈Ψ±kx(x, y)|H (k)|Ψ±kx(x, y)〉 =

∫ L→∞

0

(
Ψ±kx(x, y)

)†
H(k)Ψ±kx(x, y)dy (26)

=

∫ L→∞

0

1

2
|a|2 · |f(y)|2 ·

(
1 ±1

)
~dx · σx

(
1
±1

)
dy = ±Akx

The edge state Ψ̃±kx(x, y) at y = L will have the form.

Ψ̃±kx(x, y) = Ψ∓kx(x, y + L) (27)

The change from ± to ∓ is due to the fact that, seen from the right edge, opposite signs of λ1,2

render normalization impossible. Note, that this is still only true for large L (L >> dc).
Comparing the wave functions at both edges of the strip, it can be seen, that they are basically
each other mirror image, mirrored ate the middle of the strip (y = L/2), as illustrated in �gure
4.4.
Concerning the dispersion relation ± turn into ∓ as well of course. This however has the conse-
quence, that for a �xed energy E the edge states in each edge have to have opposite momentum
kx, i.e. they counter propagate. This can be made clear easily by imagining the tow edges being
connected at x =∞ as illustrated in �gure 4.5.
Since the states on the right edge do not o�er new information from now on the focus will be
set solely on the left edge, if not stated di�erently. Furthermore to increase the clarity it will be
assumed that A/B < 0, i.e. the lower sign in all equations in this sections will be dropped and
the simpli�ed notation Ψkx(x, y) = Ψ+

kx
(x, y) will be used.

So far only the edge state Ψkx(x, y) for the topmost block of the bulk Hamiltonian were calculated.
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Figure 4.5: qualitative image of counter propagating Kramer partners(red/blue) on each edge and
connection of edges at ∞(grey)

However as mentioned previously the solutions for the remaining block can also be deduced from
this solution. Since it is the time (and spin) reversed partner of Ψkx(x, y) it can be obtained by
setting kx → −kx.
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These considerations lead to the two edge state solution of the Hamiltonian:

|1, D = 0〉 =

(
Ψkx(x, y)

~0

)
; |2, D = 0〉 =

(
~0

Ψ−kx,(x, y)

)
where ± is for counter propagating Kramer partners and e/h refers to electron/hole-like states.
Their dispersion relation can be summarized in the e�ective Hamiltonian (, projection of the
Hamiltonian onto the edge states),

Heff = Aσzτz, (28)

or equivalently

Heff
i,j = 〈i|H(k)|j〉, i, j ∈ {1, 2, 3, 4}, (29)

where 〈·|·〉 =
∫ L→∞

0
(·)†(·)dy.

Asymmetric conductance and valence bands: D 6= 0

The results for the general BHZ-model D 6= 0 can be obtained similarly as in the simpli�ed case.
While the general form of λ1,2 is already known (compare equation (20)), the eigenvectors of the
Hamiltonian become unlikely more complicated.

To �nd them the ansatz Ψ(x, y) = 1√
1+|w1,2

± |2
eikxe±λ1,2

(
1

w1,2
±

)
is used.

Plugging this ansatz into the Schrödinger equation again allows it to solve for w1,2
± and thus

determine the eigenvectors.

w1,2
± =

A(kx ± λ1,2)

E +M + (B −D)(λ2
1,2 − k2

x)
(30)

So again four linearly independent solutions were found and a general solution can be constructed
as a linear combination of them.

Ψ(0, y) = a1
+e

λ1y

(
1
w1

+

)
+ a2

+e
λ2y

(
1
w2

+

)
+ a1
−e
−λ1y

(
1
w1
−

)
+ a2
−e
−λ2y

(
1
w2
−

)
(31)

Normalizability of Ψ(x, y) requires that all positive exponents vanish. Since the real parts of λ1

and λ2 have the same sign this means that either a1
+ = a2

+ = 0 or a1
− = r− = 0. This can also

be seen by simply applying the boundary condition Ψ(x, y). Any other combination of vanishing
coe�cients would require the remaining two coe�cients to be zero as well.
This results in

Ψ±(0, y) = a1
±e

λ1y

(
1
w1
±

)
+ a2

+e
λ2y

(
1
w2
±

)
, (32)

where the upper sign as before corresponds to <λ1,2 < 0 and vice versa.
To ful�l the boundary condition Ψ±(0, 0) = 0 the �rst component of equation (32) requires a1

± =
−a2
±. Inserting this into the second component a then leads to w± := w1

± = w2
±. This is a closed

equation for the energy E, allowing it to calculate the dispersion relation of the edge states. At
the same time the wave function is completely determined.

Ψ±kx(x, y) =
1√

1 + |w±(kx)|2
eikxxf±(y)

(
1

w±(kx).

)
(33)

E± = −DM
B
±A

√
B2 −D2

B2
kx + C (34)
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Compare[13].
For a better overview the lower sign is dropped in the notation (if the parameters require - instead
of + as a solution this can be reintroduced by changing the sign of vg). If the chemical potential
is placed in the middle of the gap, i.e. C = DM/B the dispersion is

E = A

√
B2 −D2

B2
kx := ~vgkx, (35)

with the velocity of the edge states vg = A
√

B2−D2

B2~2 . As before the edge states for the remaining

three blocks and easily be deducted from Ψkx(x, y). As a reminder, the two edge states are the
following:

|1〉 =

(
Ψkx(x, y)

~0

)
; |2〉 =

(
~0

Ψ−kx,(x, y)

)
(36)

And the e�ective Hamiltonian of these four states is given by

Heff = ~vgσz. (37)

As before the e�ective Hamiltonian is obtained by projecting the original 4× 4 Hamiltonian onto
the edge states, or in other words

Heff
i,j = 〈i|H(k)|j〉, (38)

with

〈·|·〉 =

∫ L

0

(·)† (·) dy. (39)

In this reduced Hilbert space the edge states |1〉 and |2〉 work as a basis. Note that in the process
of projecting the Hamiltonian onto the edge states, which are a superposition of conductance-
and valence band states, the information about these two bands was lost. Hence the Hamiltonian
contains no more trace of the ~s-Pauli matrices, but only of the σi acting on the Kramer-spin space.
Note that the form of |Ψe

±kx |
2 in y-direction is if λ1,2 ∈ R is qualitatively the same as in the case

of D = 0. For λ ∈ C \ iR Ψ
e/h
±kx will show the behaviour of a periodic function enveloped by

a function decaying in y-direction as in the D = 0-case. Hence both alternatives lead to states
concentrated on the edge. The condition for λ1,2 /∈ iR are A

B2−D2 > 4MB > 0 [14]

5 Breaking of time reversal symmetry

So far the e�ective 2× 2 Hamiltonian of the edge states in a system invariant under time reversal
was determined. In this section the consequences of a time reversal breaking barrier over the full
y-range of the topological insulator will be discussed.In x-direction it shall be situated between
x = 0 and x = dB Experimentally this could be realized by putting a ferromagnet on top of the
topological insulator device as it can be seen in �gure 5.1.

To theoretically realize the breaking of time reversal symmetry the e�ective Hamiltonian of
the edge states has to be modi�ed. A general modi�cation has the following form.

Hmod = Heff + n0σ0 + ~n~σ (40)

The ni could be depending on x, it shall be assumed here though that they are constant for
0 < x < dB and zero everywhere else.



14 QUANTUM TRANSPORT IN TOPOLOGICAL INSULATORS

Figure 5.1: schematic of the edge a 2D topological insulator with magnetic barrier

So the e�ective Hamiltonian along the x-direction for the topological insulator with a magnetic
barrier considered here will have the form

Heff =

 ~vGkxσz for x < 0
~vGkxσz + C ′ + µBg~n~σ for 0 < x < dB
~vGkxσz for dB < x

(41)

Where C ′ could be a varying chemical potential within the barrier.
In the basis order |1〉, |2〉, the Hamiltonian within the barrier is represented by

Heff =

(
~vgkx + C ′ + nz nx − iny

nx + iny −~vgkx + C ′ − nz

)
(42)

The solutions outside of the barrier are obviously the two basis vectors, so that it will be enough
to solve the Schrödinger equation within the barrier and then joint the functions continuously.

Note, that within the barrier the energy dispersion of the edge states becomes

E = C ′ ±
√
~2v2

gk
2
x + n2

x + n2
y + n2

z, (43)

hence a gap opens in the spectrum, as it can be seen in �gure 5.2

Re�ectionless propagation:nx = ny = 0

To show some interesting consequences of intact time reversal symmetry the case nx = ny = 0,
which does not break it will be discussed before the more general case.
To solve the Schrödinger equation within the barrier kx is replaced by its operator representation
−i∂x, making the equation a �rst order di�erential equation. For the upper block it reads as
follows.

~vg
i

∂

∂x
σzΦ(x) = ((E − n0)1− nzσz) Φ(x), (44)

which is solved by

Φ(x) = a · eik
′
xx|1〉+ b · eik

′′
xx|2〉, (45)
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Figure 5.2: energy spectrum of the edge states outside of the barrier (red and blue), inside the barrier
(black) for n2

x + n2
y + n2

z = 0.1~2v2g/nm2, C'=0

where k′x and k′′x are de�ned by

k′x :=
E − C ′ − nz

~vg
; k′′x :=

E − C ′ + nz
~vg

.

Viewing this as a tunnelling problem a state |1〉 incoming from the left (x < 0) is either re�ected
back to x < 0 into left moving state |2〉 or transmitted past the barrier into a right moving state
|1〉 . Keep in mind, that the states |1〉 and |2〉 are counter propagating and hence neither re�ection
from |1〉 to |1〉 nor transmission from |1〉 to |2〉 is possible. Assuming no state |2〉 propagating from
the right x > dB towards the barrier the following boundary conditions for Φ(x) are obtained:

Φ(0) = |1〉+ r|2〉; Φ(dB) = t|1〉,

where t and r are transmission respectively re�ection amplitudes. Note, that since the Schrödinger
equation is a �rst order di�erential equation only the functions itself, but none of their derivatives
have to be matched at x = 0 and x = dB .[4]

Applying these boundary conditions the variables a = 1, b = r = 0 and t = eik
′
xdB can be

determined. Note that the transmission T = |t|2 = 1 and the re�ection R = |r|2 = 0 are abso-
lutely independent of E,C and nz. It can hereby seen, that intact time reversal symmetry renders
all backscattering impossible. The transmission T and re�ection R for the states |2 − 4〉 are the
same. The exact form of their transmission and re�ection amplitude will be discussed with more
generality in the next section.

Qualitatively this can also be understood as an interference e�ect. When a for example spin-
up electron is backscattered into a spin down state the spin has to be rotated by π or −π. Since
the resulting state is a superposition of both possibilities and for spin-1/2-particles a spin di�erence
of 2π corresponds to a factorial di�erence of −1 the interference is destructive.[6]

Imperfect transmission: nx 6= 0 6= ny

Now an arbitrary breaking of time reversal symmetry , i.e. nx 6= 0 6= ny( still assuming, that they
are constant over 0 < x < dB tough) shall be allowed. This will result into non zero re�ection R .
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Since the Hamiltonian remains block diagonal the Schrödinger equation can be solved blockwise
again. The equation for the upper block is reduced to the following.

∂

∂x
Φ∗ =

i

~vg
(Eσz − nz1 + inxσy − inyσx) Φ∗(x) (46)

=
1

~vg

(
i(E − n0 − nz) ny + inx

ny − inx i(−E − nz)

)
︸ ︷︷ ︸

:=M

Φ∗(x), (47)

where Φ∗ = σzΦ was introduced. A general solutions to equation (46) is given by

Φ∗(x) = eMx (a|1〉 − b|2〉) . (48)

From this the actual solution Φ(x) can be derived.

Φ(x) =σzΦ
∗(x) = σze

Mx (a|1〉 − b|2〉)
=eσzMσzxσz (a|1〉 − b|2〉) = eσzMσzx (a|1〉+ b|2〉) (49)

M is diagonalizable and therefore the matrix exponential eσzMσzx can be calculated easily with
the result

eσzMσzx = e
−i nz~vg x

cosh
(

ν
~vg x

)
+ iE

ν sinh
(

ν
~vg x

)
−

(ny+inx) sinh
(

ν
~vg x

)
ν

−
(ny−inx) sinh

(
ν

~vg x
)

ν cosh
(

ν
~vg x

)
− iE

ν sinh
(

ν
~vg x

)
 , (50)

and

e−σzMσzx = e
i nz~vg x

cosh
(

ν
~vg x

)
+ −iE

ν sinh
(

ν
~vg x

) (ny+inx) sinh
(

ν
~vg x

)
ν

(ny−inx) sinh
(

ν
~vg x

)
ν cosh

(
ν

~vg x
)
− −iEν sinh

(
ν

~vg x
)
 . (51)

In the last step

ν :=
√
n2
x + n2

y − (E)2 (52)

was introduced.
With this collected information the Φ(x) can be determined for arbitrary boundary conditions
and thereby the transmission and re�ection amplitudes can be calculated.
Since |1〉 and |2〉 are Kramer partners they are always counter propagating. For a given energy
E > 0 |1〉 is propagating with positive kx and |2〉 with a negative kx. Hence a the right propagating
state |1〉 will be re�ected into the state |2〉 at the barrier or be transmitted. Same applies for the
a state |2〉 approaching the barrier from the right side. Note, that, if the sign of the energy
changes, the sign of kx changes as well and hence the propagation direction is inverted. From
these considerations the boundary conditions shown in table 1 and can be derived. Inserting the

direction of propagation bc at x=0 bc at x=dB

E > 0 left → right Φ(0) = |1〉+ re→|2〉 Φ(dB) = te→|1〉
E > 0 right → left Φ(0) = te←|2〉 Φ(dB) = |2〉+ re←|1〉
E < 0 right → left Φ(0) = th←|3〉 Φ(dB) = |3〉+ rh←|4〉
E < 0 left → right Φ(0) = |4〉+ rh→|3〉 Φ(dB) = th→|4〉

Table 1: boundary conditions to determine transmission and re�ection amplitudes of the edge states
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boundary conditions displayed in table 1 gives linear systems of equations for all transmission and
re�ection amplitudes. The results obtained are:

re→ =
ny − inx

ν coth
(

ν
~vg dB

)
− iE

rh→ =
ny + inx

ν coth
(

ν
~vg dB

)
− iE

re← =
−ny − inx

ν coth
(

ν
~vg dB

)
− iE

rh← =
−ny + inx

ν coth
(

ν
~vg dB

)
− iE

te→ = τe
−i nz~vg x th→ = τ∗e

−i nz~vg x (53)

te← = (te→)
∗

th← =
(
th→
)∗

where τ was de�ned as

τ := cosh

(
ν

~vg
dB

)
+
iE sinh

(
ν

~vg dB

)
ν

−
(n2
y + n2

x) sinh
(

ν
~vg dB

)
ν2 coth

(
ν

~vg dB

)
− iEν

.

If the time reversal symmetry is broken by a magnetic ~B �eld as proposed in the introduction of
this section a spin coupling between the two degenerated conductance band states and between the
two valence band states of the form µBgE/H~σ ~B has to be added to the original BHZ-Hamiltonian.
The term µB is the Bohr magneton and gE/H are the g-factors of the conductance and the valence
band.

In the basis order |E+〉,|H+〉,|E−〉, |H−〉 this additional term to the Hamiltonian has the form

HMag =


µBgEBz 0 µBgE (Bx − iBy) 0

0 µBgHBz 0 µBgH (Bx − iBy)
µBgE (Bx + iBy) 0 −µBgEBz 0

0 µBgH (Bx + iBy) 0 −µBgHBz

 , (54)

or shorter

HMag = µB (g+ + g−sz)~σ ~B. (55)

where as before ~s are the Pauli matrices acting on the conductance band- valence band space and
~σ act on the Kramer-spin space. Further g+ = 1

2 (gE + gH) and g− = 1
2 (gE − gH) were introduced.

This Hamiltonian will be, as the BHZ-Hamiltonian before, projected onto the edge states |1〉
and |2〉. In this basis it has the form

H
eff
Mag =µB

(
(g+ + γ̂ (kx) g−)Bz (g+ + γ (kx) g−) (Bx − iBy)

(g+ + γ (kx) g−) (Bx + iBy) − (g+ + γ̂ (−kx) g−)Bz

)
(56)

=µB

(
(g+ + γ (kx) g−) (σxBx + σyBy) +

(
g+ +

g−
2

(γ̂ (kx) + γ̂ (−kx))
)
σzBz +

g−
2

(γ̂ (kx)− γ̂ (−kx))Bz

)
.

Here the two terms γ(kx) and γ̂(kx) were introduced. They are de�ned as

γ̂(kx) =
1− |w(kx)|2

1 + |w(kx)|2
(57)

and

γ(kx) =
1− w∗(kx)w(−kx)√

1 + |w(kx)|2
√

1 + |w(−kX)|2
. (58)



18 QUANTUM TRANSPORT IN TOPOLOGICAL INSULATORS

Comparing the equation 42 to equation 56 yields to the following relations:

nx =µB (g+ + γ(kx)g−)Bx := µB ĝBx (59)

ny =µB (g+ + γ(kx)g−)By := µB ĝBy (60)

nz =µB

(
g+
g−
2

(γ̂ (kx) + γ̂ (−kx))
)
Bz := µBgzBz. (61)

ĝ will be referred to as the e�ective g-factor from here. The remaining term g−
2

(
γ̂(kx)− ˆγ(−kx)

)
Bz

acts like a chemical potential, but vanishes for kx ≈ 0. Since this limit will be su�cient for all
further purposes this term will be ignored from here on.

The remaining terms lead to the following re�ection and transmission amplitudes.

re→ =
µB ĝ (By − iBx)

ν coth
(

ν
~vg dB

)
− iE

rh→ =
µB ĝ (By + iBx)

ν coth
(

ν
~vg dB

)
− iE

re← =
µB ĝ (−By − iBx)

ν coth
(

ν
~vg dB

)
− iE

rh← =
µB ĝ (−By + iBx)

ν coth
(

ν
~vg dB

)
− iE

te→ = τe
−iµBĝzBz~vg x

th→ = τ∗e
−iµBĝzBz~vg x

(62)

te← = (te→)
∗

th← =
(
th→
)∗

τ := cosh

(
ν

~vg
dB

)
+
iE sinh

(
ν

~vg dB

)
ν

−
(µB ĝ

(
B2
y +B2

x

)
) sinh

(
ν

~vg dB

)
ν2 coth

(
ν

~vg dB

)
− iEν

with

ν =
√
µ2
B ĝ

2
(
B2
x +B2

y

)
− E2. (63)

Note, that only the in-plane components Bx and By actually change the amplitude of the
transmitted state, while Bz only adds a phase. Note further, that re�ection R = |re/h↔ |2 and
transmission T = |te/h↔ |2 is the same for all states, namely

R =
µ2
B ĝ

2
(
B2
x +B2

y

)
|ν|2 coth2

(
ν

~vg dB

)
+ E2

(64)

T =1−R =

(
cosh2

(
ν

~vg
dB

)
+
E2

|ν|2
sinh2

(
ν

~vg
dB

))−1

(65)

For E=0 the re�ection and transmission are identical to the values derived from the scattering
matrix calculated by Carsten Timm et al in [15], where a delta-peak like magnetic barrier was
assumed. It is also conform with the work of Nojoon Myoung [16]. The second paper considered
graphen instead of HgTe-quantum wells, which due to its linear dispersion holds similar results.

The equation T = 1 − R (charge conservation) used to calculate T is not a mere assumption
here, as self-evident as it might seem, but can be proven by exploiting the fact, that σzM

†σz = −M
and hence

1 = eM+σzM
†σz = eM · eσzM

†σz . (66)

.
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Proof.

1−R =
(
〈1|+ (re→)

∗ 〈2|
)

(|1〉+ re→|2〉)

=
((
〈1|+ (re→)

∗ 〈2|
)
eσzM

†σzdB
)

︸ ︷︷ ︸
=(te→)∗〈1|

(
eMdBσz (|1〉+ re→|2〉)

)︸ ︷︷ ︸
=te→|1〉

= T (67)

Since T and R are the same for all states, the choice of basis states used to proof the equation
does not matter.

5.1 Conductivity

The BHZ-Model as introduced above shows two edge states on each edge. This corresponds to
2 channels for charge transport on each edge, each contributing to the conductivity of the whole
device with G0 = e2/~, hence the total conductivity is given by

Gtot = 2G0, (68)

where nc is the number of channels contributing to the charge transport. With the possibility of
backscattering, as it is the case with a magnetic barrier added to the topological insulator, the
conductivity will decrease though. Re�ected states will not contribute to the charge transport at
all, while transmitted states contribute unaltered, leading to the re�ection dependent conductance
of

Gtot(R) = (1−R)2G0 (69)

In generally the conductance would be calculated as G = G0

∑max
channels Tn, where Tn are the

Transmission values of each channel. Because T is the same for all edge states, this is reduced
to equation (69) here though. Since the re�ection was recently calculated the change in the
conductivity device in dependency of the Energy E, the strength of the magnetic �eld |B| and the
width of the barrier dB can be discussed and displayed.

Barrier thickness and magnetic �eld dependence at E=0

In the case of low energy E ≈ 0, which in reality will be the relevant one, since the BHZ-model
was designed solely for these low-energy systems, the re�ection (and transmission) reduce to

R = tanh2

(
µB ĝ|B‖|

~vg
dB

)
, T = cosh−2

(
µB ĝ|B‖|

~vg
dB

)
(70)

with B‖ = (Bx, By)T . Both functions are monotonous with T converging to zero ,T → 0, for large
magnetic �elds or a great width of the barrier µB ĝ|B‖|dB � ~vg, hence R heading towards 1, as
it would be expected in the �rst place.
At the same time, for vanishing magnetic �eld or barrier thickness µB ĝ|B‖|dB � ~vg the trans-
mission becomes 100%, which is in agreement with the results in section 5, where time reversal
symmetry was not broken. The progression of the conductivity in dependence of the magnetic
�eld and the barrier width for E = 0 , just discussed, is displayed in �gure 5.3. dB is displayed
in units of ~vg/|ĝB‖| and |B‖| in units of ~vg/|ĝ|dB Measurements of the conductivity for varying
|B| or dB seem promising in order to access the value of |ĝ|

Conductivity at �nite Energy

Considering �nite energies E two cases need to be distinguished. The �rst one E < mB ĝ|B‖| is
qualitatively the same as E = 0. For dB →∞ the re�ection R approaches 100 % and for dB → 0
the transmission T does likewise. The increased energy does cause a damping in the change of the
re�ection though, i.e. high energy states are more likely to pass the barrier at the same barrier
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Figure 5.3: conductance G in units of 2G0 of a topological insulator strip with magnetic barrier dB ,
respectively |B|.

width, as one would expect naively.
The second case E > mB |ĝB| is more interesting though. In this case ν becomes an imaginary
number, turning the hyperbolic functions describing R and T into trigonometric ones,(cosh(ix) =
cos(x), etc.), which causes both R and T to vary periodically with dB . More precisely R will
vary between 0 and µ2

B |ĝB|2/E2 and the periodicity will be π~vg/ν. The dependence of the
conductance on dB for the second case is displayed in �gure 5.5.
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Figure 5.4: conductance G of a topological insulator strip with magnetic barrier in units of 2G0 in
dependency of E in units of ~vg/µB |ĝ|dB for (a)|B| = ~vg/µB |ĝ|dB and (b)|B| = 2~vg/µB |ĝ|dB . )

Concerning the |B‖|-dependence of the conductivity the limits remain unchanged independently
of the energy, i.e. for |B‖| → ∞ R approaches 100% and for |B‖| → 0 R approaches 0. However,
in between one has to distinguish between the two cases ν ∈ R and ν ∈ iR once again. In the �rst
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case, i.e. µB ĝ|B‖| > E the nonzero energy only leads to a damping in the change rate of R and
T, while in the second case R is no longer monotone in |B|, but instead vary non periodically (ν
depends on |B‖|) between 0 and µ2ĝ2|B‖|2/E2. As a function of energy for �xed magnetic �elds
the re�ection falls, from its value for E = 0, monotone till E = µB ĝ|B‖| and from then on, while
still converging towards 0 varies non periodically as well. Plots of the conductivity in units of
Gtot(0) = 2e2/~ for both cases and depending on E with �xed |B‖| and depending on |B‖| with
�xed E are displayed in �gure 5.5 and �gure 5.4.
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Figure 5.5: conductance G of a topological insulator strip with magnetic barrier in dependency of

(a) dB (in units of ~vg/ν) for E2

µ2
B
ĝ|B‖|2

= 2

(b-d)in dependence of |B‖| (in units of
|B|~vg
µB |ĝ|dB

) for (b)E =
~vg

µB |ĝ|dB
, (c)E =

~vg
µB |ĝ|dB

and (d)E = 10
~vg

µB |ĝ|dB

6 Induced Superconductivity

According to BCS-theory of superconductivity, named after Bardeen, Cooper and Schrie�er, al-
ready the smallest attractive interaction between electrons in a superconductor leads to an insta-
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bility of the Fermi sea and the the formation of Cooper pairs (pairs of electrons with opposite spin
and momentum), which carry the supercurrent. At the same time the energy spectrum for single
electrons becomes gapped:

Ek =

√
~k2

2m
+ ∆2,

where the zero of energy and momentum is placed at the Fermi energy respectively at the Fermi
momentum. [17][18]
If metals or semiconductors are placed in the direct vicinity of a superconductor Cooper pairs can
tunnel into it, leading superconductivity, while the density of cooper pairs in the superconductor
itself decreases. This process is called proximity e�ect.[19] On the other hand single electrons
with energies below the superconducting gap cannot enter the superconductor. When, however an
electron with an energy below the gap approaches the superconductor an electron of opposite spin
and momentum can be excited, leaving behind a hole with the same spin as the original electron.
The two electrons can now enter the superconductor as a cooper pair, while the hole is left behind
in the metal. Of course the opposite process of a hole recombining with a cooper pair, leaving
behind an electron is possible as well. This leads to a coupling between particle and hole like states.

In this section a model for HgTe/CdTe-quantum well in proximity to a superconductor will be
considered. Experimentally this can be realized by putting an s-wave-superconductor on top of
the quantum well in the x-y-plane. Theoretically it is accomplished by a doubling of the Hilbert
space, since now apart from the original four basis states |E±〉 and |H±〉 also the corresponding
hole states |Eh±〉 and |Hh±〉 have to be considered. The Hamiltonian without superconductivity
of these hole states is simply a negative copy of the original BHZ-Hamiltonian. To realize the in-
teraction between particle and hole like states coupling terms ∆E and ∆H are added. ∆E couples
between |E±〉 and |Eh±〉, while ∆H does the same between |H±〉 and |Hh±〉. (It is assumed that
the superconductive coupling is the same for both Kramer partners.)
This leads to the following 8× 8-Hamiltonian:

HS = (ε+M(k)sz +Akxsxσz +Akysy) τz + (∆+ + ∆−sz) τx, (71)

where ~τ are the Pauli matrices acting on the particle-hole space. (As a reminder: ~s are acting
on the conductance band-valence band space and ~σ on the Kramer-Spin space.) A similar Hamil-
tonian (with additional termes to include the e�ects of Bulk inversion asymmetry and the linear
Rashba spin orbit coupling term ) was used by P.Recher et al. ([22]) to show that HgTe quantum
wells with induced superconductivity can exhibit majorana edge states in presence of a Zeeman
�eld. [23].
In the basis order |E1,+〉 ; |H1,+〉 ; |Eh1 ,−〉 ; |Hh

1 ,−〉 ; |E1,−〉 ; |H1,−〉 ; |Eh1 ,+〉 ; |Hh
1 ,+〉

HS =


H(k) ∆ 0 0

∆ −H(k) 0 0
0 0 H∗(−k) ∆

0 0∆ −H∗(−k)

 (72)

with

∆ := 12∆+ + sz∆− (73)

and H(k) the topmost 2× 2-block of the BHZ-model, as de�ned in equation 11.
The edge state solutions for the �rst and third block are already known from earlier sections. The
edge state solutions for the second and fourth, i.e. the hole-like edge states are obtained by setting
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E → −E or simply kx → −kx. The four edge states thus can be written as

|1, e〉 =


Ψkx(x, y)

~0
~0
~0

; |1, h〉 =


~0

Ψ−kx,(x, y)
~0
~0


(74)

|2, e〉 =


~0
~0

Ψ−kx(x, y)
~0

; |2, h〉 =


~0
~0
~0

Ψkx(x, y)


Note, that as before only one edge of the topological insulator is considered. To obtain an e�ective
Hamiltonian for the edge states of the topological insulator in proximity of a superconductor the
Hamiltonian is again projected onto these four edge states. The states |1, e〉, |1, h〉, |2, e〉, |2, h〉, are
a basis in this reduced Hilbert space and the e�ective Hamiltonian in this basis is

Heff
S =


~vgkx |α|eiϕα
|α|e−ϕα −~vgkx

−~vgkx |α|eiϕα
|α|e−iϕα ~vgkx

 , (75)

where α(kx) = ∆+ + ∆−γ(kx) and ϕα = argα were de�ned. It will be shown later, that the
deviation of γ(kx) from γ(0) is neglectable for all kx within the bulk gap and thus from here on
α(kx) will be replaced by α := α(0). The Hamiltonian is a block-diagonal matrix consisting of two

Bogoliubov-de-Genne Hammiltonians HBdG(±kx). There eigenvalues are E = ±
√

~2v2
gk

2
x + |α|2,

i.e. states with E < |α| are forbidden within the superconducting area. To �nd the solutions of the
Schrödinger equation inside the superconducting area, we set kx = −i∂x and use an exponential
ansatz.

HBdG

(
a1

a2

)
eqx = E

(
a1

a2

)
eqx (76)

Assuming ai 6= 0 for one i ∈ 1, 2 leads to the secular equation

q = ±
√
|α|2 − E2

~vg
(77)

While this forbids the existence of edge states within the proximity of a superconductor (given
their energy is in the gap) interesting physics occur, when the super conductor is placed only on
one half of the topological insulator strip, say x > 0.[20]

6.1 Andreev-re�ection

As just described now it is assumed, that a superconductor is only placed above one half of the
HgTe/CdTe device, as displayed in �gure 6.1, making the Hamiltonian

HNS

{
Heff for x < 0

Heff
S for x > 0

(78)

While the edge states |1〉 and |4〉 approaching the superconducting regime from the left cannot
enter the positive part of the x-space, as long as their energy E is smaller than α, the fact that
Heff
S couples electron- and hole-like states lets the possibility of Andreev re�ection arise, i.e.

an incoming electron is re�ected as a hole and thereby creating a new cooper pair within the
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Figure 6.1: Schematic of a junction of a topological insulator and topological insulator in proximity to
a superconductor-junction (NS-j)unction

Figure 6.2: Illustration of Andreev re�ection at an NS-junction as taken from [P2]

superconducting area, or an incoming hole is re�ected as an electron, while absorbing a cooper
pair. Compare �gure 6.1.

To determine the Andreev relection amplitudes the following boundary conditions at x = 0 are
applied to the known solutions for the Schrödinger equation.
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The general solution for x > 0 is

Φx>0(x) = (a1|1, e〉+ a2|1, h〉+ a3|2, e〉+ a4|2, h〉) e−qx+ (79)

(b1|1, e〉+ b2|1, h〉+ b3|2, e〉+ b4|2, h〉) eqx

For energies |E| < |α| Φx>0(x) has to be an evanescent wave, so bi = 0 for all i.
Then inserting the boundary condition for an incoming electron-like state

|1, e〉+ reA|1, h〉 = Φex>0(0) (80)

respectively for an incoming hole state

|2, h〉+ rhA|2, e〉 = Φhx>0(0) (81)

one sees that Φex>0(0) = |1, e〉+ reA|1, h〉 and Φhx>0(0) = rhA|2, e〉+ |2, h〉.
Reinserting both solutions into the Schrödinger equationHeff

S Φ
e/h
x>0(x) = EΦ

e/h
x>0(x) gives a system

of linear equations for reA respectively rhA with the solutions

reA = e−iϕα

(
E

|α|
− i
√
|α|2 − E2

|α|

)
= eiϕα−i arccos( E

|α| ) (82)

and

rhA = eiϕα

(
E

|α|
− i
√
|α|2 − E2

|α|

)
= eiϕα−i arccos( E

|α| ) (83)

Note that |re/hA | = 1. This means the probability of any state below the superconductor's energy
gap being re�ected is 100%.[20]

For energies E > |α| q becomes imaginary, allowing an incoming states to enter and propagate
within the superconductor. Of course the same incoming state could also still create or annihilate
a Cooper pair, leaving behind a counter propagating hole/electron-state. As a consequence the
solutions for x > 0 have the following form

Φx>0(x) = (a1|1, e〉+ a4|2, h〉) eqx + (a2|1, h〉+ a3|2, e〉) e−qx (84)

With the same boundary conditions as for |E| < |α| for incoming electron or hole states the

same solutions Φ
e/h
x>0(x) are obtained. Insertion in the Schrödinger-equation however gives the

slightly di�erent Andreev-re�ection amplitudes for particles and holes with energies above the
superconducting gap:

reA = e−iϕα

(
E

|α|
−
√
E2 − |α|2
|α|

)
(85)

rhA = eiϕα

(
E

|α|
−
√
E2 − |α|
|α|2

)
(86)

It is easily seen that |rA| < 1 and |rA| →
E→∞

0. [20]

Since Andreev re�ection changes the sign of a state's charge as well as its propagation direction
the total charge carried in one direction is doubled. Following this logic the conductivity of the
topological insulator-superconductor-junctions can be written as G(|rA|2) = G(0)

(
1 + |rA|2

)
. In

terms of energy this means, that the conductance is constant at twice its usual value, till E = |α|
and then falls monotone converging towards G(0), its value without presence of a superconductor
(or magnetic barrier). The energy dependence is plotted in �gure 6.3.
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Figure 6.3: conductance G in units of G(0) of NS-junction in dependency of energy in units of |α|

6.1.1 Andreev bound states

It was seen in the previous section, that edge states (electron- and hole like alike), have a 100%
chance of being Andreev re�ected, at the boundary between the undisturbed topological insulator
and on in vicinity of a superconductor, if their energy is below the superconductor's energy gap.
This leads to the conclusion, that, if superconductors were placed on both ends of the edge, the
edge states were bound in between.
In this section a set up like this is considered. Compare �gure 6.4. The superconductors SL and
SR shall be placed in the areas x < xL < 0 and 0 < xR < x (S-sections). The undisturbed part of
the topological insulator between xL and xR will be referred to as N-section. The phases of the
superconductors be ϕL and ϕR, not necessarily the same. The corresponding Andreev-re�ection-

amplitudes are r
e/h
AL/R. Any state with energies below |α| will be Andreev re�ected at each border,

hence limiting its motion to a �nite area between xL and xR, yielding to discrete energies for these
so called Andreev bound states.
To calculate these energy levels we de�ne

~a :=


aL,e
aR,e
aL,h
aR,h

; ~b :=


bL,e
bR,e
bL,h
bR,h

 , (87)

where aL,e is the amplitude of an elctron-like state moving from the left border to the centre of
the N-section, bR,h is a hole-like state moving from the centre to the right border and likewise.

~a and ~b are connected via

~a =


0 0 rhAL 0
0 0 0 rhAR
reAL 0 0 0

0 reAR 0 0

~b and ~b =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

~a (88)
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Figure 6.4: schematic of a junction consisting of a topological insulator between two topological insulators
in proximity to a superconductor

Combining these two equations equation leads to
−1 0 0 rhAL
0 −1 rhAR 0
0 rAL −1 0
rAR 0 0 −1


︸ ︷︷ ︸

:=A

~b = 0. (89)

Under the condition that ~b 6= 0, this leads to

det(A) = 0

⇔(1− reARreAL)(1− rhALrhAR) = 0

⇔1− e±i(
:=ϕ︷ ︸︸ ︷

ϕR − ϕL)

(
E

|α|
− i
√
|α|2 − E2

|α|

)2

⇔1 = ±e±iϕ/2
(
E

|α|
− i
√
|α|2 − E2

|α|

)

⇔ arccos

(
E

|α|

)
= ±ϕ

2
+ πn

⇔⇔ E = |α| cos
(ϕ

2

)
The relation e−i arccos(η) = η − i

√
1− η2 was exploited in the course of the transformations. [20]

To calculate the charge transferred through this SNS-junction a little di�erent approach is taken.
Assume a small voltage V is applied to the junction. An electron/hole state thus acquires the
phase ±kxLs = ±eV Ls/vg, while moving from xL to xR, with Ls = |xR − xL| For Andreev-
bound-states to exist the total phase an electron, which is Andreev re�ected at one border of the
SNS-junction, i.e. turned into a hole, and then Andreev-re�ected again at the other boundary, i.e.
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returned to its prior state, has to be a multiple of 2π.

2πn = ±ϕ+ eV
2L

~vg
− 2 arccos

(
E

|α|

)
(90)

where Ls is the width of the N-part and the upper sign corresponds to a right moving electron,
while the lower one corresponds to a left moving one.

Solving for E again gives

arccos

(
E

|α|

)
= ±ϕ

2
− nπ +

eV Ls
~vg

, (91)

where di�erent values of n correspond to di�erent branches of the arccos. Inverting it branchwise
and then putting the parts together, the following result is obtained.

Keeping L as a �nite size we get

E

|α|
= cos

(
ϕ

2
+
eV Ls
~vg

)
. (92)

Note that for V = 0 the former result for the energy of the Andreev bound states is reproduced.
Exploiting L

vF
is the time tL an electron or a hole need to pass from one of the the boundaries to

the other one equation (92) can be rewritten as

E

|α|
= cos

(
ϕ

2
+
eV

~
tL

)
. (93)

Replacing tL with an arbitrary time t a time dependent formula for the energy is retrieved.

E

|α|
= cos

(
1

2

(
ϕ+

eV

~
t

))
:= cos

(
1

2

(
ϕ+

∂ϕ

∂t
t

))
. (94)

Comparing both sides it can be see, that

∂ϕ

∂t
=

2eV

~
. (95)

Now, looking at the time derivative of the energy allows it to calculate the current through the
SNS-junction, the so called Josephson-current.[21]

dE

dt
= |α| sin

(
ϕ

2
+
eV

~
t

)
eV

~
= I · V (96)

⇒ I(ϕ, t) =
e|α|
~

sin

(
ϕ

2
+
eV

~
t

)
There are two things to be noted. First of all unless the phase di�erence of the two superconduc-
tors is not a multiple of π there will be a �nite current even without any voltage applied.

If on the other hand a �nite voltage is applied to the junction the current is not constant but
changing periodically with time. Also a higher voltage does not imply a higher current here, but
merely change the periodicity.

Note that all the calculations in this section require that |re/hA |2 = 1. This can only be as-
sumed as given for voltages not signi�cantly changing the energy of particle- and hole-like state.
In any other case the energy these states gain whenever propagating back and forth between the
the boundaries would add up giving them enough energy to leave the N-section and enter one of
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the S-sections.

Further note, that the calculated current results from one left or right moving electron state
and the counter propagating hole it is re�ected into. This means for the topological insulator
device being watched the current would be 2 times higher, since there are two electron channels
on each edge. Knowing this |α| could be measured by determining the maximum of I(ϕ, t) over
time. This maximum is called the critical current Ic.

Josephson current and magnetic �eld

Another way to manipulate the Josephson current is by applying an magnetic �eld through the
N-section of the device. The e�ect of it can be calculated by replacing kx = px

~ by the generalized

term k̂x =
pe/hx +eAx

~ , where ~A is the the vector potential.[4]

Assuming a uniform magnetic �eld in z-direction ~A can be chosen so that Ax = Bzy. Fur-
thermore a magnetic �eld in z-direction does not in�uence the transmission of the N-section, since
it only adds a phase to the states. This phase has opposite sign for an particle and the counter
propagating hole it is re�ected to, so that it can be ignored completely. The same procedure as
above leads to

E = |α| cos

(
ϕ

2
+
eV

~
t+

2πBzLsy

φ

)
, (97)

where φ = h/2e is the magnetic �ux quantum.

The resulting current is

I(ϕ,Bz, t) =
e|α|
~

sin

(
ϕ

2
+
eV

~
t+

2πBzLsy

φ

)
(98)

It can be seen, that the Josephson current also varies periodically with the magnetic �eld. Mea-
suring the Josephson current for a smoothly varying magnetic �eld is a possible way to determine
the critical current and thereby |α|.

As it can be seen the current does under in�uence of a magnetic �eld not only change period-
ically with time but also with variation of said magnetic �eld. By measuring the critical current
for a smoothly changed magnetic �eld, |α| can be determined.

In the experiments described in [24] and [25] this procedure has been used to show the cur-
rent density along the y direction, to verify, that the charge is carried along the edges while the
energy lies within the bulk gap. To understand this, the model has to be expanded a bit.

So far only the Josephson-current through the one-dimensional edge was calculated. To generalize
it to 2 and 3 dimensions it is rewritten as

I1D(ϕ,Bz, t) = Ic sin

(
ϕ

2
+
eV

~
t+

2πBzLy

φ

)
= Ic=

(
ei(

ϕ
2 + eV

~ t+ 2πBzLy
φ )

)
(99)

Interpreting a higher dimensional device as a many 1-dimensional channels in direct proximity to
each other the current becomes the sum over all these channels or, by replacing the critical current
by a critical current density Jc the integral over the cross section of the device. This means the
current through a 2d-set-up becomes

I2D ==
∫ ∞
−∞

Jc(y) exp

[
i

(
ϕ

2
+
eV

~
t+

2πBzLy

φ

)]
dy. (100)
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. The Josephson current in 2- dimensional devices is the imaginary part of the Fourier-transformation
of the critical current density Jc through the junction. The new critical current Ic is the maximal
current, hence the absolute value of the Fourier-transformation. For our topological insulator
device this means

Ic(Bz) = I2D
c =

∣∣∣∣∫ ∞
−∞

Jc(y) exp

[
i

(
2πBzLy

φ

)]
dy

∣∣∣∣ (101)

In reverse this gives added information about the form of the critical current density by measuring
the critical current.

Exactly this method was used in the experimental papers [24] and [25] to examine the current
density in a Josephson junction consisting of a HgTe quantum well with two superconductors on
top of each end of the 2d-device. The measurements were taken for di�erent chemical potentials,
within and outside of the bulk energy gap, varied through di�erent gate voltages.

How the form of the current density is obtained from these measurements shall be elaborated
here at two examples.

If for example the energy of the states lies within the bulk gap of the topological insulator,
hence charge should be only carried along the edges, what will be modelled by the current density

Jgapc = e|α|
~ (δ(y − L/2) + δ(y + L/2)), the net critical current results in

Igapc (Bz) =
2e|α|
~

cos

(
πBzLyL

φ

)
. (102)

Approximating the edge states with δ-functions is of course only appropriate for wide strips, i.e.
large L, nevertheless the measurements of [24] and [25] show the predicted sine-like behaviour.
For energies outside of the gap a rather uniform current density throughout junction is expected
and therefore it is modelled here, very simpli�ed again, as a rectangular function:

Jngapc (BZ) = J0rect
(

2y
Ly

)
. Calculating the net critical current for this density gives a Frauenhofer-

pattern:

Ingapc (Bz) = J0
sin (πBzLyL/φ)

πBzLyL/φ
(103)

Again this mirrors the experimental results from [24] and [25].

7 Combination of magnetic & superconducting barrier

Previous sections discussed the in�uence of magnetic barriers as well as di�erent combinations of
superconducting junctions on the conductance ot an HgTe/CdTe-quantum well. In this section
though both shall be combined. The magnetic barrier be extended from x = 0 to x = xB > 0 and
the superconducting section shall range from x = xSxBd to ∞.
The projection in the edge states of the Hamiltonian has the form

Heff
nmns =


Heff for x < 0

Heff
B for 0 < x < xB

Heff for xB < x < xS
Heff
S for xS < x

(104)

To calculate the conductivity G along the edge, the following vectors are de�ned.

~a∗ :=


ae,←
ae,→
ah,←
ah,→

; ~b∗ :=


be,←
be,→
bh,←
bh,→

 , (105)
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Figure 7.1: Schematic image of the NMNS-structure

where ae/h,↔ is the amplitude of an electron-/hole- like state approaching the magnetic barrier
from the left/right and be/h,↔ is the amplitude of an electron-/hole- like state veering away from
the magnetic barrier toward the left/right.(compare �gure (7.1))

The conductivity can thus be calculated as

G =
e2

~
(
|ae,L|2 + |bh,L|2 − |ah,L|2 − |be,L|2

)
. (106)

The relations between the two vectors ~a and ~b are given by

~b∗ =


re← te→
te← re→

rh← th→
th← rh→

 ~a∗;

(
ae,→
ah,→

)
=

(
0 rhA
reA 0

)(
be,→
bh,→

)
, (107)

where re/h↔ and te/h↔ are the re�ection and transmission amplitudes for electron- and hole-like

states approaching the magnetic barrier from the left/right and r
e/h
A is the Andreev-re�ection

amplitude for electron-/hole-like states approaching the superconducting domain. Altogether these
6 equations can be written as

~b =


re← 0 0 rhAt

h
→

te← 0 0 rhAr
h
→

0 reAt
h
→ re← 0

0 reAr
h
→ te← 0



ae,←
be,→
ah,←
bh,→

 . (108)

From equation (108), it will be possible to determine be,← and bh,← as functions of ae,← and ah,←
and thus reduce the conductivity to a function of ae,← and ah,← as well.
Inserting

be,→ = te←ae,← + rhAr
h
→bh,→, (109)

into

bh,→ = reAr
e
→be,→ + th←ah,← =

(109)
reAr

e
→
(
te←ae,← + rhAr

h
→bh,→

)
+ th←ah,←,

leads to

bh,→ =
reAr

e
→t

e
←ae,← + th←ah,←

1− reArhAre→rh→
, (110)
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and �nally to

be,←(E, ae,←, ah,←) = r←ae,← + rhAt→bh,→ =
(110)

r←ae,← + rhAt←t→
reAr→ae,← + ah,←

1− reArhArh→re→
. (111)

Equation (108) is invariant under exchange of e and h and thus bh,←(E, ae,←, ah,←) can be obtained
from be,←(E, ae,←, ah,←) by interchanging e and h:

bh,←(E, ae,←, ah,←) = be,←(E, ah,←, ae,←) (112)

The conductivity can thus be calculated as

G(E, ae,←, ah,←) =
e2

~
(
|ae,←|2 + |bh,←(E, ae,←, ah,←)|2 − |ah,←|2 − |be,←(E, ae,←, ah,←)|2

)
(113)

Note that G(E, ae,L, ah,L) = −G(E, ah,L, ae,L), i.e. the conductivity changes sign, when the charge
transport in the undisturbed topological insulator is carried out by holes instead of particles.
Assuming the charge in the undisturbed regime being carried mainly by electrons, i.e. ae,L = 1
and ah,L = 0, G(E, |B|) := G(E, 1, 0) will be referred to as the conductivity of the system.
Obviously it will depend on the strength of the magnetic �eld |B|, which is already implied here.
All re�ection and transmission amplitudes needed for the calculation are known from previous
sections and thus be simply inserted.
For example in the limit E = 0 the conductivity is

G(0, |B‖|) = 1 +
1

cosh2
(
µB ĝ|B‖|xB

~vg

)
+ sinh2

(
µB ĝ|B‖|xB

~vg

)
︸ ︷︷ ︸

=|bh,←|2

+

1− 1

cosh2
(
µB ĝ|B‖|xB

~vg

)
+ sinh2

(
µB ĝ|B‖|xB

~vg

)
2

︸ ︷︷ ︸
=be,←

.

(114)

It is plotted in �gure 7.2. Note that while the conductivity for |B‖| = 0 is twice as high as the
conductivity of a undisturbed topological insulator, it also decays faster with higher magnetic
�elds than a device with only a magnetic barrier and no superconducting regime attached to it.
This can for example be seen by comparing �gure 7.2 and �gure 5.3.

8 Determination of ∆E,∆H , gE & gH

Previous sections, in particular the sections 5 and 6 introduced di�erent set ups, technically allow-
ing it to determine the e�ective g-factor ĝ, transferring a coupling between the counter propagating
Kramer partners in the presence of a magnetic �eld B, and e�ective superconducting order param-
eter α, transferring a coupling between counter propagating electron- and hole-like edge states.
Both can be written in a similar way in terms of the respective subband parameters ∆E ,∆H , gE
and gH . The aim of this chapter will be to survey, whether said measurements of ĝ and α under
variation of any parameters can be used to access information about ∆E ,∆H , gE and gH .

In full length the two coupling constants can written as

ĝ =
1

2
(gE + gH) + γ

1

2
(gE − gH) := g+ + γg− (115)

α =
1

2
(∆E + ∆H) + γ

1

2
(∆E −∆H) := ∆+ + γ∆−, (116)

where

γ =
1− w∗(±kx)w(∓kx)√

(1 + |w(±kx)|2)(1 + |w(∓kx)|2)
(117)

w(kx) =
A (kx + λ1)

E +M + (B −D)(λ2
1 − k2

x)
(118)
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Figure 7.2: Conductivity G in units of G0 in dependency of |B| in units of ~vg/µB |ĝ||xB | for E=0

Both |α| and ĝ can thus be understood as a function of γ, where g+ = ĝ(γ = 0) and and g− = ∂γ ĝ
and likewise for ∆±. Of course after knowing g± or ∆± gE/H respectively ∆E/H are easy to
obtain. In other words: After measuring the two e�ective quantities ĝ or α for di�erent values of
γ a linear �t would be enough to determine the subband parameters. Of course only the absolute
values of ĝ and α a accessible through measurement, however it will be shown shortly, that γ itself
is a real number and therefore the two e�ective parameters are as well, so that this is in fact is no
restriction at all.

The urging question is now, how can γ be varied to obtain measurements for di�erent values
of it. As γ depends on the edge state momentum kx, the chemical potential C and the BHZ-
parameters A,B,D and M the following sections will be devoted to separately vary their value in
order to check how high their actual in�uence on γ is.
All variations will be carried out to �rst order in the particular parameter, while the remaining
parameters remain constant. Since the expressions get to excessive the variations will be done for
several sets of BHZ-parameters(compare 1) for each parameter around its unvaried value in the
corresponding set. Since the sample parameters are rather chosen rather randomly, this procedure
of course holds sure enough some uncertainty and thus rather gives an overview over the in�uence
of the parameter than claiming to be 100% reliable for all sets of parameters.

parameter set dq() A0(eV ) B0(eV 2) D0(eV ) M0(eV )
1 61 3.78 -55.3 -37.8 -0.00015
2 70 3.65 -68.6 -51.2 -0.01
3 70 3.65 -70.6 -53.2 -0.001
4 n.a. 3.73 -85.7 -68.2 -0.000035

5(topologically trivial) 55 3.87 -48 -30.6 0.009

Table 2: BHZ- parameters as taken from [9],[11] and [26]

Variation of well thickness d

The parameters, which can be varied most easily are the chemical potential C and the momentum
kx. C can be varied with the application of a gate voltage and kx by applying di�erent voltages
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to each end of the edge of the quantum well. Variation ot the two parameters however show that
they have little to no in�uence on the values of γ, as long as the changes are small enough to keep
the total energy within the bulk gap, which is necessary to maintain the existence of edge states.

But comparing γ

∣∣∣∣
C=kx=0

for di�erent sets of parameters leads to the assumption, that at least

one of them must have a notable in�uence.
This means measurements of alpha and ĝ with varying parameters could actually be used to
deduce the values of gE/H and ∆E/H .
All of the parameters A,B,D,M depend on the geometry of the topological insulator, namely the
thickness d of the quantum well, and could be calculated numerically. [11]
A variation of these parameters hence would implicitly mean a variation of d according to

γ =γ

∣∣∣∣
d=d0

+
dγ

dd

∣∣∣∣
d=d0

(δd) +O((δd)2)

=γ

∣∣∣∣
d=d0

+

(
∂γ

∂w

(
∂w

∂A

∂A

∂d
+
∂w

∂B

∂B

∂d
+
∂w

∂D

∂D

∂d
+
∂w

∂M

∂M

∂d

)
δd

) ∣∣∣∣
dq=d0

+O((δd)2) (119)

Since the derivatives in d are not analytically accessible the following de�nition is made instead.

∂Pi
∂dq

δdq := δPi = Pi − Pi,0, (120)

for Pi ∈ {A,B,D,M}. Inserting this in 119 leads to

γ =γ

∣∣∣∣
dq=dq0

+

(
∂γ

∂w

(
∂w

∂A

∣∣∣∣
A=A0

δA+
∂w

∂B

∣∣∣∣
B=B0

δB +
∂w

∂D

∣∣∣∣
D=D0

δD +
∂w

∂M

∣∣∣∣
M=M0

δM

))
+O(δPiδPj)

(121)

The evaluated terms for the parameter sets from table 2 are displayed in table 3. This values

γ
∣∣
dq=dq0

∂w
∂A

∣∣
A=A0

∂w
∂B

∣∣
B=B0

∂w
∂D

∣∣
D=D0

∂w
∂M

∣∣
M=M0

1 -0.45 3.9 · 10−5 −1.8 · 10−2 2.6 · 10−2 0.48
2 -0.55 1.7 · 10−3 1.7 · 10−2 2.3 · 10−2 0.31
3 -0.56 2.4 · 10−4 1.7 · 10−2 2.2 · 10−2 0.43
4 -0.63 7.1 · 10−6 −1.5 · 10−2 1.9 · 10−2 0.38

Table 3: Variation in various parameters for parameter sets 1-3

give at least a little insight on the in�uence the various parameters have on γ. δA for example
would have to be of magnitude 10

2

to 104 to change γ signi�cantly. Comparing values of A at
di�erent well-thickness (table 2) this is surely not to expect and therefore deviation caused by A
are assumably neglectable.
In terms of B and D things look di�erently. Changes in B and D of magnitude 101 already have
measurable in�uence on γ. Variations of this size can be obtained by tuning the well thickness by
several , as seen in table 2.
Concerning the mass term M even variation of 10−1eV would be noticeable. Looking at table 2
with this in mind, mass-changes of this magnitude seem possible.

Conclusion

As mentioned before only changes in B,D and M seem to have measurable in�uence on γ, while
variations of A,C and kx very little to no in�uence, as long as ĝ and α are measured via transport
properties of the edge channels, as suggested in previous sections.
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The in�uential parameter B,D and M all depend on the thickness d of the quantum well(,as
well as A). Hence obtaining values of ĝ and α for di�erent values of γ would require the growth
of various HgTe/CdTe-quantum wells of di�erent thickness d. Since the suggested transport ex-
periments to determine the coupling constants require edge states, and these only exist in the
inverted regime d > dc ≈ 6.3nm is required, while d still has to be small enough to maintain the
2-dimensional character of the system.

Concerning the actual measurement of the coupling constants the measurement of the Josephson
current through a SNS-junction seems to be most promising to determine α, while ĝ is probably
achieved easiest from the decay of conductivity for a smoothly increasing magnetic barrier.
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