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Abstract

This dissertation consists of three integral self-contained parts. The first part develops a

novel Monte Carlo algorithm, called the near-Maximal Algorithm for Poisson-disk Sampling

(nMAPS), to efficiently generate the nodes of a high-quality mesh for the calculation of

flow and the associated transport of chemical species in low-permeability fractured rock,

such as shale and granite. A good mesh balances accuracy requirements with a reasonable

computational cost, i.e., it is generated efficiently, dense where necessary for accuracy, and

contains no cells that cause instabilities or blown-up errors. Quality bounds for meshes

generated through nMAPS are proven, and its efficiency is demonstrated through numerical

experiments.

In the second part, a deterministic Monte Carlo hybrid method for time-dependent

problems based on the physics of particle transport described through the linear Boltzmann

equation is presented. The method splits the system into collided and uncollided particles

and treats these sets with different methods. Uncollided particles are handled through

high-accuracy Monte Carlo methods, while the density of collided particles is calculated

using discontinuous Galerkin methods. Theoretical details of the algorithm are developed

and shown to be effective through numerical experiments. The properties associated with

the labeling as collided and uncollided leverage the respective strengths of these methods,

allowing for overall more accurate and computationally efficient solving than each method on

its own.

In the last chapter, an extension to the Dynamic Likelihood Filter (DLF) is presented to

include Advection-Diffusion equations. The DLF is a Bayesian estimation method specifically

designed for wave-related problems. It improves on traditional methods, such as variants

of Kalman filters, by not only using data at its time of observation but also at later times
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by propagating observations forward through time. This enriches the available data and

improves predictions and uncertainties. The theory to include diffusion in the framework

of the DLF is developed, and it is shown through numerical experiments that the DLF

outperforms traditional data assimilation techniques, especially when observations are precise

but sparse in space and time.
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Chapter 1

Introduction and Outline

Partial Differential Equations (PDEs), that is equations which depend on various partial

derivatives of their solution functions, have, for a long time, been a cornerstone in natural

sciences such as physics and engineering. They are fundamental in our understanding of the

world and are at the core of some of the most influential theories of our time such as Quantum

theory, Fluid dynamics, General relativity and many more. Outside of the natural Sciences

their range of applications stretches from purely Mathematical considerations like Differential

Geometry or Variational Calculus to the description of complex systems in Computer Science,

Neuroscience and Social Sciences. Stochastic Partial Differential Equations (SPDEs), that

generalize PDEs through the inclusion of random variables as Forces and coefficients, are

widely applied in Financial Sciences, Statistical Mechanics, Weather and Climate modeling

and many more areas. While there is a vast and still growing body of theories discussing

and classifying the existence and uniqueness and various other properties of solutions to

PDEs, it is widely understood that finding an explicit solution to a given equation by hand

is the exception not the rule, particularly as systems become more complex. In applications

approximate solutions are usually generated through numerical methods using computers.

Following the ’No free lunch theorem’ acceptable accuracy of such an approximation

usually needs to be balanced with the computational complexity required to find it. While

this has led to the development of better and bigger hardware, the fact that accuracy of

solvers and complexity often times do not relate linearly makes simple upscaling of a problem

prohibitively expensive in many cases. Thus the development of methods with a better
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trade-off between accuracy and computational complexity is a very active area of research

tackled by experts in many fields. Such algorithmic attempts at tackling this issue include,

but are not limited to:

• tailoring the way of approximation to a specific problem.

• direct simulation of systems using deterministic or Monte Carlo methods.

• the application of Machine learning methods such as Deep neural networks either

instead or as part of an existing solver.

• the incorporation of real-life data to improve the predictions of solvers.

The following chapters of this dissertation are comprised of three manuscripts that tackle

the issue of improving accuracy of solutions to PDEs or the predictions derived from them

via one or more of the ideas just listed. They are structured as follows.

The manuscript in Chapter two, ’Variable resolution Poisson-disk sampling for meshing

discrete fracture networks’ [3], covers an approach for the transport equation that tailors the

discretization of the problem to the specific problem. The main body of work focuses on

an algorithm that can provide this discretization quicker than previously existing methods,

thus leading to a net speedup in computation time. The algorithm is specifically designed

to provide meshes for Discrete Fracture Networks (DFN), which are commonly used in

the simulation of fractured materials. DFN explicitly simulates fractures with the same

distribution as the fractures in the actual material. Our two-phase algorithm first randomly

generates a 2D mesh on the fractures. It then utilizes this 2D mesh as a foundation to

construct a 3D mesh on the surrounding material. The nodes of both the initial 2D and

the 3D mesh are generated through Poisson disk sampling. Poisson disk samples exhibit

provably favorable properties for 2D triangulation. We establish stringent bounds for mesh

quality in the 2D part of the algorithm and numerically test their validity. In 3D, Poisson

disk samples do not inherently ensure high-quality meshes. However, we found that in 3D

triangulations of Poisson disk samples, low-quality elements of a mesh are exceedingly rare.

Through numerical experimentation with the 3D part of our algorithm, we demonstrate that
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rejecting nodes that lead to low-quality elements and subsequently resampling is a successful

strategy for obtaining high-quality 3D meshes within reasonable computation time.

Chapter three is based on the manuscript ’A Hybrid Monte Carlo, Discontinuous Galerkin

method for linear kinetic transport equations’ [1]. In it, we present an algorithm to solve the

linear Boltzmann equation, a linear kinetic equation describing the free transport of particles

scattering off a medium. It is used to model many systems, including neutronic dynamics,

radiation transfer, cometary flow, and dust particles. Generalizations find applications in

colloidal systems, fluid dynamics, and non-equilibrium thermodynamics. Common approaches

to finding a solution are Monte Carlo methods using ideas based on direct simulation of the

particles or discretization methods. Examples of the latter would be the use of Discontinuous

Galerkin (DG) methods. While the latter reduces the problem to systems of linear equations,

the coupling of the PDEs causes the dimension of these linear systems to become prohibitive at

high accuracies. While Monte Carlo methods do not suffer from this curse of dimensionality,

they become substantially less efficient if the number of scattering events is increased.

Conveniently, DG methods excel in the diffusion limit, that is at intermediate to high

scattering probabilities, producing acceptable results at relatively low cost. Thus MC and

DG appear to complement each other well. We put this fact to the test in this manuscript.

The algorithm presented in chapter three combines MC and DG into a hybrid method

that splits the original PDE into scatter-free subequations that are perfectly suited for high

accuracy Monte Carlo methods and another set of subequations that are taking care of the

scattering. Through smart handling of the interactions of these split equations, we see that it

suffices to solve the scattering equations with relatively cheap, low accuracy DG-methods

without a substantial loss in overall accuracy. The result is a method that is comparable

in accuracy and run time, even though not strictly better than MC in low scattering cases

and significantly more efficient than MC and DG respectively in cases with higher scattering

without sacrificing accuracy.

Lastly, in chapter four, titled ’A Dynamic Likelihood Approach to Filtering for Advection

Diffusion Processes’ [2], a Bayesian filtering algorithm is introduced. Such filtering algorithms

use a noisy/inaccurate model along with also noisy data to describe a real-life system. In

this case, the real system is assumed to be governed by a stochastic PDE. The goal is to find
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the best estimator of the true state of a system conditioned on the data and the model. This

adds a new dimension to the notion of accuracy, as we are now not only interested in how well

a numerical solution approximates an analytical solution of a PDE. Now we care about how

well a real system is approximated, adding a modeling error on top of the numerical errors

considered so far. Classical algorithms will minimize the expected error between Model and

reality at any time at which data is available. The dynamic likelihood filter introduced in this

chapter extends this by using the available data to generate simulated data at times between

observations. While this adds an additional modeling error we can show that minimizing the

expected error not only through real but also simulated data yields a net increase in accuracy

in prediction in settings where data is sparse, but accurate. Specifically we show how this

method can be used in the context of stochastic advection diffusion equation and compare the

newly developed method to a Kalman filter in the same context. We demonstrate numerically

that our method, the Dynamic likelihood filter (DLF), outperforms the classic filter in terms

of accuracy in many cases. We show advantages specifically in settings with sparse, but

accurate data as well as very inaccurate or even ill-informed models. An interesting feature

of the DLF is its capability of providing Bayesian estimates at future times.

Lastly, in Chapter Four, titled ’A Dynamic Likelihood Approach to Filtering for Advection

Diffusion Processes’ [2], an introduction is made to a Bayesian filtering algorithm. Such

filtering algorithms use a noisy/inaccurate model along with noisy data to describe a real-life

system. This introduces an additional aspect to the concept of accuracy. Now, we not only

seek to understand how well a numerical solution approximates an analytical solution of a PDE.

Classical algorithms will minimize the expected error between model and reality at any time

at which data is available, utilizing real observations only. However, our approach extends this

by incorporating simulated data, which we refer to as pseudo-Observations. We demonstrate

how this can be done specifically for systems governed by stochastic advection diffusion

equations. In cases where advection dominates information is travels along the characteristics

of the PDE, which is reflected in the fact that we evolve pseudo-observations along these

characteristics. Accounting for difusion and noise along these characteristics is non-trivial and

requires some feedback from the model. Although having to simulate pseudo-observations

introduces an additional modeling error, we can demonstrate that minimizing the expected
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error through both real and simulated data leads to a net increase in prediction accuracy,

particularly in settings where data is sparse but accurate. We demonstrate numerically that

our method, the Dynamic likelihood filter (DLF), outperforms the classical Kalman filter in

terms of accuracy in many cases. We show advantages specifically in settings with sparse, but

accurate data as well as very inaccurate or even ill-informed models. An interesting feature

of the DLF is its capability of providing Bayesian estimates at future times.
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2.1 Disclosure

This chapter is, up to formatting identical to the paper of the same name [40]. The paper is

a collaborative work with Matthew R. Sweeney, Carl W. Gable Jeffrey D. Hyman and Juan

M. Restrepo and was published in the Journal of Computational and Applied Mathematics

in 2022. Ideas and theoretical results newly presented in this paper were worked out by

Johannes Krotz under their guidance. Numerical experiments presented were executed by

Johannes Krotz using software implemented in Python also by Johannes Krotz. All coauthors

wrote and edited the paper together.

2.2 Abstract

We propose a two-stage algorithm for generating Delaunay triangulations in 2D and Delaunay

tetrahedra in 3D that employs near maximal Poisson-disk sampling. The method generates a

variable resolution mesh in linear run time. The effectiveness of the algorithm is demonstrated

by generating an unstructured 3D mesh on a discrete fracture network (DFN). 2D Poisson-disk

samplings on the DFN are generated through a cell-based rejection algorithm. After an initial

sampling the grid-cells are used to fill in holes in the sampling in order to obtain a near-maximal

Poisson-disk sampling. The 2D-sample on the DFN is then used as seed for a 3D algorithm,

that generates a conforming 3D-Poisson-disk sampling on the surrounding volume of the

DFN. Low quality tetrahedra are removed from the 3D-sampling and replaced in a resampling

process. Even though Poisson-disk sampling methods do not provide triangulation quality

bounds in more than two-dimensions, we found that low quality tetrahedra are infrequent

enough and could be successfully removed to obtain high quality balanced 3-dimensional

meshes with tetrahedra topologically acceptable for the application in DFN.

2.3 Introduction

There are a number of methods used to model flow and the associated transport of chemical

species in low-permeability fractured rock, such as shale and granite. The most common

are continuum models, which use effective medium parameters [21, 42, 56, 57, 68, 70] and
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discrete fracture network/matrix (DFN) models, where fractures and the networks they

form are explicitly represented [10, 44, 58]. In the DFN methodology, individual fractures

are represented as planar N − 1 dimensional objects embedded within an N dimensional

space. Both conforming methods, where the mesh conform to intersections [30, 52, 53], and

non-conforming methods, which use more complex discretization schemes so the mesh does

not need to be conforming [5, 18, 59, 60], are currently in use. If the matrix surrounding

the fracture network needs to be meshed, complications of mesh generation are compounded

for both conforming and non-conforming methods [4]. While the explicit representation of

fractures allows for DFN models to represent a wider range of transport phenomena and

makes them a preferred choice when linking network attributes to flow properties [25, 31, 29],

it also leads to unique and complex issues associated with mesh generation.

We propose a two stage algorithm that generates a conforming variable resolution triangular

mesh on a three-dimensional discrete fracture network. The proposed algorithm uses maximal

Poisson-disk sampling to efficiently produce the point distribution used to generate the mesh

of each fracture with controlled mesh resolution. The first stage is based on the framework

presented in [14], that uses a rejection algorithm to generate an initial Poisson-disk sampling

with linear runtime in the number of points generated. The second phase is based on the

framework presented in [49] and adds additional points to the samples. This second steps

maximizes density without violating the restrictions of a Poisson-disk sampling.

Once a Poisson-disk sampling is generated, a conforming Delaunay algorithm [51] is used

to connect this point distribution where lines of intersection between fractures form a set of

connected edges in the Delaunay triangulation of the network. The time it takes to generate

the samplings scales linearly with the number of nodes. While it is not guaranteed that the

density of our Poisson-disk sampling is maximal, i.e. no further nodes can be added without

violating the restrictions on distances between nodes, we show that in practice our samples

are maximal enough to obtain high quality meshes. We also present a three-dimensional

version of the method that can be used to create a tetrahdron mesh of the volume surrounding

the network that conforms to the fracture network.

In section 2.4, we describe the challenges in the DFN mesh generation and the general

properties of maximal Poisson-disk sampling. In section 2.5, we provide a detailed explanation
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of our method, for both 2D fracture networks and 3D volume meshing. In section 2.6, we

propose metrics to access the quality of the mesh and run times for both 2D and 3D

demonstration examples. In section 2.7, we provide a few remarks.

2.4 Background

2.4.1 Discrete Fracture Networks: Mesh Generation Background

Due to the epistemic uncertainty associated with hydraulic and structural properties of

subsurface fractured media, fracture network models are typically modeled probabilistically

[54, 55, 57]. In the DFN methodology, individual fractures are placed into the computational

domain with locations, sizes, and orientations that are sampled from appropriate distributions

based on field site characterizations. The fractures form an interconnected network embedded

within the porous medium. Each fracture must be meshed for computation, so that the

governing equations for flow and transport can be numerically integrated to simulate physical

phenomena of interest.

Formally, each fracture in a DFN can be represented as a planar straight-line graph

(PSLG) composed of a set of line segments that represent the boundary of the fracture and a

set of line segments that represent where other fractures intersect it. Then each fracture can

be described by a set of boundary points on the PSLG, denoted {p}, and a set of intersection

lines {ℓi,j}, where the subscripts i and j indicate that this line corresponds to the intersection

between the ith and jth fractures. Once {p} and {ℓi,j} are obtained for every fracture in

the network, a point distribution covering each fracture must be generated. If a conforming

numerical scheme is used, then all cells of {ℓi,j} are discretized lines in the mesh which must

coincide between intersecting fractures. So long as minimum feature size constrains are met,

a conforming triangulation method, such as presented in [51], can be implemented to connect

the vertices such that all lines of intersection form a set of connected edges in a triangulation.

In general, one wants to properly resolve all relevant flow and transport properties of

interest while minimizing the number of nodes in the mesh, and these two goals compete. A

uniform mesh resolution is straightforward to generate and appropriate for Eulerian transport
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simulations. However, spatially variable numerical diffusion means that the resulting mesh will

need a very small resolution to accurately capture solute fronts.[2] Variable mesh resolution

can be appropriate for single-phase flow simulations or in particle tracking simulations where

the spatially variable resolution does not adversely affect transport properties. However,

this variable mesh generation is more complex than its uniform counterpart. One of the

principal complications of variable mesh resolution generation is creating a smooth transition

of cell sizes. Absent that, jumps in the computed fields of interest and other numerical

artifacts will occur. the starting point for the notion of mesh quality would appear to be the

analysis leading to the minimum angle condition that the smallest angle should be bounded

away from zero. This originated with Zlamal [71] and is quoted by Strang and Fix [65]

together with a statement regarding how poorly shaped triangles may have an effect on

the condition number of the linear algebra problem that must be solved. This result was

improved by Babuska and Aziz [1]. Most methods for the generation of a conforming DFN

mesh use a uniform point distribution on the networks and then modify the connectivity

locally to conform to intersections [52, 53]. When using a conforming mesh, the numerical

methods for resolving flow and transport in the network are typically simpler and have

fewer degrees of freedom compared to non-conforming mesh methods [20]. Similarly, almost

all non-conforming numerical methods use a uniform resolution, but some create variable

resolutions across fractures (still uniform within a single plane) in an attempt to reduce the

number of total nodes in the mesh [6]. A variable mesh resolution in non-conforming schemes

could drastically reduce the number of nodes in the mesh while retaining the the ability to

retain higher orders of accuracy. However it is rarely implemented due to the associated

meshing complications [8].

The generation of a variable resolution, unstructured conforming mesh is quite rare, even

with the advantages noted above. One technique in use is the Features Rejection Algorithm for

Meshing (FRAM) that addressed the issues associated with conforming DFN mesh creation

by coupling it with network generation [30]. Through this technique, FRAM allows for the

creation of a variable resolution mesh that smoothly coarsens away from intersections where

pressure gradients are typically the highest in flow simulations. FRAM has been implemented

in the computational suite dfnWorks [33], which has been used to probe fundamental
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aspects of geophysical flows and transport in fractured media [27, 28, 35, 37, 46, 64] as well

as practical applications including hydraulic fracturing operations [26, 38, 45], inversion of

micro-seismicity data for characterization of fracture properties [50], the long term storage

of spent civilian nuclear fuel [25], and geo-sequestration of carbon dioxide into depleted

reservoirs [32].

However, the implementation used is an iterative refinement method for point distribution,

which is very inefficient. To triangulate each polygon a ‘while‘ loop was executed to apply a

Rivara refinement algorithm to an initially coarse distribution based on the boundary set

{p}. If an edge in the mesh is greater than the current maximum edge length, a new point is

added to the mesh at the midpoint of that edge to split it in two.

In practice, the edge splitting is done using Rivara refinement [62, 63]. The resulting field

is then smoothed using Laplacian smoothing in combination with Lawson flipping [39]. This

process is repeated until all edges met the assigned target edge length, which could be a

spatially variable field based on the distance to {ℓi,j}, for example. While the resulting mesh

quality is quite good, the process is inefficient and cumbersome.

The superior modeling qualities of variable resolutions can be made practical, if

implementation complexities can be addressed. We do so here using a Poisson-disk sampling

methodology where the final vertex distribution is directly created rather than iteratively

derived. While the method was initially designed to specifically improve FRAM, we provide

the details in a general format such that it can be implemented for any discrete fracture

network methodology, including those that use both conforming and non-conforming flow and

transport simulations. Details are given for Delaunay triangulations, which are of importance

in many two-point flux finite volume solvers as they are used to generate the Voronoi control

volumes on which these solvers compute. In the next section, we recount the properties

of maximal Poisson-disk sampling that we used to design and implement this new method.

Further we recount theoretical bounds on mesh gradation that ensure high-quality variable

mesh resolutions.
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2.4.2 Maximal Poisson-disk Sampling

Meshes from a sample that is dense yet cluster free have provable high quality bounds

[7, 12, 16]. Similar quality bounds can be established for sphere-packings, whose radii are

Lipschitz continuous with respect to their location [47, 48, 66]. Maximal, or almost maximal,

Poisson-disk samplings fulfill all these conditions leading to high-quality meshes. Traditionally,

Poisson-disk samplings are generated with an expensive dart-throwing algorithm [13]. These

algorithms struggle to achieve maximality as the probability to select a free spot becomes

decreasingly small. The algorithm in [49] based on these dart-throwing algorithm is the first

to guarantee maximality and reaches run times of O(n log(n)) (n : number of points sampled)

by using a regular grid for acceleration and sampling from polygonal regions in its second

phase to achieve maximality. They report close to O(n) performance in practice [15, 17, 49].

Prior to that, an algorithm not based on dart-throwing was proposed in [9], which while not

guaranteeing maximality, showed linear performance in the number of nodes sampled. Their

algorithm was extended to variable radii in [14]. Other authors further provide algorithms that

produce variable Poisson-disk samplings on 3D-surfaces[23],[24]. Their triangulation-based

algorithm runs in linear time, and while theoretically not guaranteeing maximality, their

experimental results suggest that maximality is achieved. A summary of relatively recent

developments in this area along with comparison of different methods can be found in [69].

added references mentioned by reviewer 1, except for PushPull , the algorithm in there starts

with non PDS and starts moving points around. Since this is specifically what we’re trying to

avoid it doesn’t seem suitable imo. Maximal Poisson-disk samplings X on a domain Ω ⊆ Rd

are random selections of points X = {xi}n
i=1, that fulfill the following properties:

1. empty disk property:

∀i ̸= j ∈ {1, ..., n} : |xi − xj| > r.

We will call r the inhibition radius,

2. maximality:

Ω =
n⋃

i=1
BR(xi),
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where Bε(x) = {y ∈ Ω : |x− y| < y} is the open ball of radius ε around x. R will be

called the coverage radius. [49]

Intuitively, the empty disk property says that every sample point is at the center of d-

dimensional ball or disk that does not contain any other points of the sampling. Maximality

implies that these balls cover the whole domain, i.e., there is no point y ∈ Ω, that is not

already contained in one of the balls around a point in the sample.

It is useful to generalize these definitions, such that both the inhibition and the coverage

radius depend on the sampling points, i.e. r = r(xi,xj) and R = R(xi,xj) for all xi,xj ∈ X.

We hereon refer to this construct as a variable radii maximal Poisson-disk sampling, and we

refer to a Poisson-disk sampling with constant radii as a fixed-radii maximal Poisson-disk

sampling.[49]

A common approach is to assign each point x ∈ Ω a positive radius ρ(x) and have r(xi,xj)

be a function of ρ(xi) and ρ(xj). Natural choices for r(xi,xj) are, for example, ρ(xi) or ρ(xj)

for i < j, thereby determining the inhibition radius depending on the ordering on X. Order

independent options include min(ρ(xi), ρ(xj)),max(ρ(xi), ρ(xj)) or ρ(xi) + ρ(xj). The last of

these options corresponds to a sphere packing [49]. The coverage radius can, but does not

have to be different from ρ.

The Delaunay triangulation of a sampling maximizes the smallest angle of its triangles

among all triangulations of this sampling [43]. Since numerical errors in many applications

tend to increase if these angles become smaller [71], Delaunay triangulations often are a

triangulation of choice. Moreover, the dual of the Delaunay triangulation is a Voronoi

tessellation, which in a certain sense is optimal for two-point flux finite volume solvers [19],

that are commonly used in subsurface flow and transport simulators such as fehm [72],

tough2 [61], and pflotran [41]. In case of maximal Poisson-disk samplings we can go

one step further and give a lower bound on these angles. In what follows we estimate the

bounds that apply to the sampling we generate on DFN in later sections. We provide a brief

summary of the proofs found in [49], while highlighting the most important results we use.

We then proceed with the new bounds.
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Lemma 2.1. The smallest angle α in any triangle is grater than arcsin
(

r
2R

)
, where r is the

length of the shortest edge and R the radius of the circumcircle or

sin(α) ≥ r

2R (2.1)

Proof. This is a direct corollary of the central angle theorem.

This Lemma allows us to give explicit bounds for maximal Poisson-disk samplings. While

we will focus entirely on inhibition radii given by r(xi,xj) = min(ρ(xi), ρ(xj)), where ρ(x) is

some positive function, comparable results can be found for different r(xi,xj) in a similar

fashion.

Lemma 2.2. Let ε ≥ 0 and ρ : Rn → R (n ≥ 2) be a positive Lipschitz continuous function

with Lipschitz constant L with Lε < 1. Let X ⊂ be a variable maximal Poisson-disk sampling

on the domain Ω ⊂ Rn with inhibition radius r(x,y) = min(ρ(x), ρ(y)) and coverage radius

R(x,y) ≤ (1 + ε)r(x,y).(ε > 0)

Let the triangle ∆ be an arbitrary element of the Delaunay triangulation of X (n = 2) or an

arbitrary 2-dimensional face of a cell of the Delaunay triangulation of X.

If the circumcenter of ∆ is contained in Ω, each angle α of ∆ is greater or equal to

arcsin
(

1−L−εL
2+2 ε

)
or

sin(α) ≥ 1− L− εL
2 + 2ε .

Proof. Let α be the smallest angle of ∆ and x,y ∈ X be the vertices of the shortest edge of

∆, i.e. the vertices opposite to α. Without loss of generality assume ρ(x) ≤ ρ(y). Since X is

a Poisson-disk sampling |x− y| ≥ min (ρ(x), ρ(y)) = ρ(x).

Now let z ∈ Ω be the circumcenter of ∆. Since X is maximal, there exists v ∈ X with

|z − v| ≤ R(z,v) ≤ (1 + ε)ρ(z). Next we notice that, because ∆ was retrieved from a

Delaunay triangulation v cannot be contained in the interior of ∆’s circumcircle. Hence

|z− x| ≤ |z− v| ≤ (1 + ε)ρ(z) ≤ (1 + ε) (ρ(x) + L|z− x|) .

15



Rearranging this inequality yields

|z− x| ≤ ρ(x) 1 + ε

1− L− εL.

The result follows by applying Lemma 2.1 after noticing that |x − y| is the length of the

shortest edge and that |z − x| is the radius of the circumcirle.

Remark 2.4.1. Note that for n > 2 the same result is true, if we assume the circumcenter

of the n-simplex, of which ∆ is a face, is contained in Ω instead of the circumcenter of ∆

itself. The proof is identical.

Remark 2.4.2. While this result allows to control the quality of 2D-triangulations of maximal

Poisson-disk samplings, it can also be used to gauge how close a given Poisson-disk sampling

is to being maximal.

The previous Lemma only gives us bounds on all triangles, if their circumcenters are

contained in Ω. The next two Lemmas will give sufficient conditions to guarantee exactly

this as long as Ω is a polytope.

Lemma 2.3. Let Ω ⊂ R2 be a polygonal region and X a maximal Poisson-disk sampling

containing all vertices of Ω. Let the inhibition radius r(x,y) be defined like in the previous

lemma. Further let the coverage radius of X ∩ δΩ fulfill Rδ(x,y) < r(x,y)√
2(1+L) , i.e. |x − y| <

√
2

1+L
r(x,y) for all x,y ∈ δΩ∩X, the circumcenter of all triangles in the Delaunay triangulation

of X are contained in Ω̄.

Proof. Suppose this claim is wrong. Then let ∆ be a triangle in the Delaunay triangulation

with circumcenter z /∈ Ω. For this to be possible the circumcircle needs to be cut in (at

least) two pieces by δΩ, separating z and the vertices of ∆. Since ∆ is part of a Delaunay

triangulation and all vertices of Ω are part of the sampling, this is done by (at least) one

segment of a straight line, i.e. δΩ contains a secant of the circumcircle.

Let b1,b2 ∈ δΩ be the two boundary points closest to the circumcircle on either side of that

line segment and let B be the disk bounded by the circumcircle. Note that B̄ ∩ Ω contains

∆ and is itself entirely contained in the disk of radius 1
2 |b1 − b2| < 1

2

√
2

1+L
r(b1,b2) around
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1
2(b1 + b2).

Now let x /∈ {b1,b2} be a vertex of ∆ and let b ∈ {b1,b2} be the point of the two, that

is closer to x. We already established that x lies within the just mentioned ball around
1
2(b1 + b2). Let xp be the projection of x onto the line segment connecting b1 and b2. Then

|x−xp| < 1
2

√
2

1+L
r(b1, b2), because x lies within the circle of that radius, |xp−b| < 1

2

√
2

1+L
r(b1, b2),

because b is the closer of the two points b1, b2 and therefore

|x− b| =
√
|x− xp|2 + |b− xp|2 <

r(b1,b2)
1 + L

≤ ρ(b)
1 + L

≤ ρ(b). (2.2)

Since |x − b| ≥ min(ρ(x), ρ(b)) this implies |x − b| ≥ ρ(x). However assuming this and

applying the Lipschitz condition on (2.2) gives us

|x− b| < ρ(b)
1 + L

≤ 1
1 + L

(ρ(x) + L|x− b|) ≤ 1 + L

1 + L
|x− b|,

which is a contradiction.

Remark 2.4.3. Lemma 2.3 does generalize to higher dimensions. It is not very practical

because it is difficult to guarantee the bounds on Rδ, if the boundary is more than 1-dimensional.

However it is still possible to get some bounds on the radii of the circumcircles and then,

using Lemma 2.1, on the angles, if the distance of non-boundary nodes is greater than some

lower bound d > 0.

In fact, using notation from the previous proof, let ∆ again be an n-simplex with

circumcenter outside of Ω and x /∈ δΩ on of its nodes. Since the circumsphere of any

simplex in a Delaunay triangulation does not contain any other nodes the radius of the

intersection with δΩ is bounded by Rδ. One can show using simple geometric arguments that

this forces the radius of ∆’s circumsphere R to fulfill the following inequality

R2 ≤ (R− d)2 +
(
Rδ
)2
⇒ R ≤

d2 +
(
Rδ
)2

2d ≤

(
Rδ
)2

d
. (2.3)
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If Rδ(x,y) < r(x,y) there is a lower bound on d, continuously depending on Rδ, solely due

to the fact, that we have a Poisson-disk sampling. If Rδ = Rδ(xp, b) is any bigger, d needs

to be bounded artificially. This implies that the angle bounds change continuously, if the

conditions for Lemma 2.3 cannot be met they still can be relatively controlled by the choice of

the artificial bound on d.

Under the conditions of the previous Lemmas the simplices of the Delaunay triangulation

are guaranteed to only have well-behaved triangular faces. In three or more dimensions

however this does not imply that the simplices themselves are well-behaved. It is still possible

for a Delaunay triangulation to contain slivers for example, that is tetrahedra whose 4 nodes

are all positioned approximately on the equator of their circumsphere. In [11] slivers are

characterized as tetrahedra, whose nodes are all close to a plane and whose orthogonal

projection onto that plane is a quadrilateral. In [3] slivers are equivalently classified as

tetrahedra with a dihedral angle close to 180◦ containing their own circumcenter. Slivers can

have all their faces be equilateral triangles, yet have dihedral angles that are arbitrarily small,

causing numerical errors to blow up.

While slivers cannot be entirely avoided, one can show that if the nodes x,y, z,w of a

maximal Poisson-disk sampling form a sliver, the distance between w and the plane spanned

by x,y, z needs to be very small [11]. This allows us to avoid slivers within certain planes, by

first generating a 2D sampling in these planes and then enforcing a minimal distance between

the plane and further nodes in the 3D sampling. We use this to avoid slivers around the

DFN and the faces of the surrounding matrix. This also causes slivers to be rather scarce in

a 3D maximal Poisson-disk sampling as given any three nodes the vast majority of possible

positions of a fourth node do not produce a sliver. This scarcity of slivers in a sampling makes

it quite likely that if nodes of slivers are removed and resampled the resulting triangulation

will have less slivers than the previous one. This opens the door for a rejection-style algorithm

to be successful in improving the overall quality of a triangulation.
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2.5 Methods

Our proposed method for mesh generation is broken into three primary steps. First, we

generate a 2D point distribution on each fracture in the DFN. After merging these samples

and removing conflicts with regards to the empty disk property, we generate a 3D-Poisson

disk sampling on the surrounding matrix by adding points wherever maximality allows it.

Finally, in an attempt to remove slivers, we remove their nodes and randomly replace them

until no slivers remain.

2.5.1 2D Sampling Method

We generate 2D Poisson-disk samplings in a successive manner using a rejection method.

This method can be performed on every fracture in the network independent of the other

fractures. (Details can be found in [30].) In each step a new candidate is generated, and if it

does not break the empty disk-property with any of the already accepted nodes, it is accepted.

For the sampling in two dimensions, we use a variable inhibition radius that increases linearly

based on the distance to the closest intersection of the DFN.

In particular, we reject a candidate node y, if there is an already excepted node x such

that the condition

|x− y| ≥ r(x,y) = min(ρ(x), ρ(y)) (2.4)

is violated. In this equation ρ(x) as a piecewise linear function given by

ρ(x) = ρ(D(x)) =


H
2 for D(x) ≤ FH

A(D(x)− FH) + H
2 for FH ≤ D(x) ≤ (R + F )H

(AR + 1
2)H otherwise

. (2.5)

Here D(x) is the Euclidean distance between x and the closest intersection. H,A,R and F are

parameters, that determine the global minimal distance between two nodes (H/2), the range

around an intersection on which the local inhibition radius remains at its minimum (FH),

the global maximal inhibition radius (ARH +H/2), and the slope at which the inhibition
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radius grow with D(x) (A). Since ρ(D) is piecewise linear, it is a Lipschitz-function with

Lipschitz-constant A.

If the sampling has a coverage radius R(x,y) ≤ (1+ε)r(x,y) for some ε > 0 the conditions

of (2.2) hold. To satisfy the conditions of (2.3) as well and thereby ensure angle bounds on all

triangles in a Delaunay triangulation we first sample along the boundary, enforcing a maximal

distance of r(x,y)√
2(1+L) between boundary nodes. As shown in [9] and [14], we generate new

candidates for our sampling randomly on an annulus around an already accepted node. This

is illustrated in Figure 2.1. The inner radius of this annulus is determined by the minimal

distance another node could have to the center node, while still preserving the empty disk

property, whereas the outer radius is determined by the maximal distance a node could have

to the center in a maximal sampling. For our choice of inhibition radius, assuming the same

radius as coverage radius, these distances can be made out to be ρ(x)
1+A

for the inner radius

and 2ρ(x)
1−A

for the outer one.

We will now go over the individual steps of the 2D algorithm. These steps can also be

found in the pseudocode Algorithm 1 in Section 2.5.3 and are illustrated in figure 2.3. The

necessary notation to read the pseudocode is found in the table at the start of the same

section. In line 3 of that code a 1D Poisson-disk sampling along the boundary of the polygon

is generated as a seed to start the algorithm. We continue to sample k new candidate nodes

at a time (line 13) around each already accepted node and determine whether they get

accepted or not (lines 14 through 22). k is a positive integer and a user-defined parameter

of the algorithm. If all k candidates around a node are rejected, we move on to the next

already accepted node (line 30). The algorithm terminates for the first time as soon as

every accepted node was the sampling center once(line 31). Following [9] and [14], we use

cell-lists to find nodes around a candidate that could potentially cause this candidate to

violate the empty-disk property, as depicted in Figure 2.2(a). The size of these cells is chosen

to contain at most one node. This allows us to disregard distance calculation with nodes

beyond a certain cutoff and therefore allows us to achieve linear run times in the number

of generated nodes (line 17). However, unlike the previously mentioned algorithms we do

not only label cells containing particles as occupied, but also cells that are too close to an

accepted node to contain a particle. In particular, if a candidate x lies in a cell C and any
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other cell D with diam(C ∪ D) ≤ rin(x) is occupied, x can be rejected right away as it

conflicts with the node in D (line 14). On the other hand, if dist(C,D) > ρ(x), there is

no need to calculate the distance between x and any potential element of D, as they can

never violate the empty disk-property. An example of that is shown in Figure 2.2(b). We

use this to our advantage in two ways: First, it allows us to reject many candidates without

calculating any distances to nearby nodes, which particularly for large values of k gives a

respectable speedup compared to the original algorithm; second, unmarked cells are easy

to find and contain at least some space for another node, allowing us to find undersampled

regions after the algorithm terminated(line 2). We fill these holes in the sample by generating

random candidates within these unmarked cells(line 3). The main algorithm is then restarted

from these newly added nodes until it terminates again (line 16). While this process can be

repeated several times, just a single resampling already increases the quality of the sampling

tremendously.

Once the point distribution is created, the conforming Delaunay triangulation method

of [51] is used to create the final mesh on the fracture. In order for a conforming Delaunay

triangulation which preserves the lines of fracture intersections as a set of triangle edges to be

created, it is sufficient that the circumscribed circle of each segment of the discretized line of

intersection be empty of any other node in the point distribution prior to connecting the mesh.

To achieve this condition, any node within the circumscribed circle of each segment of the

discretized lines of intersection is removed from the point distribution. Next, a 2-dimensional

unconstrained Delaunay triangulation algorithm is used to connect this node set. Because

of the construction method, i.e., empty regions around the lines of intersection, the line

segments that represent lines of fracture intersection must emerge in the triangulation and

the Delaunay triangulation will conform to all of the fracture intersection line segments. Once

every fracture polygon is triangulated, they are all joined together into a unified triangulated

fracture network.

2.5.2 3D sampling method

The sampling in 3D works very similar to its 2D counterpart. However, new candidates are

generated on a spherical shell around accepted nodes instead of on an annulus. The 3D
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Figure 2.1: Visualisation of a single sampling step. Current node at center, new candidates
in annulus (k=4). Inner circle is bounded by the inhibition radius of the current node.
Outer circle is bounded by maximal distance a node could be away from the current if the
Poisson-disk sampling was maximal. (In text mentions: p.20)

(a) (b)

Figure 2.2: Visualisation of how the grid is used to find possibly conflicting nodes. New
candidate in red, already accepted nodes in green, cells that can contain conflicting nodes in
grey. Red circle shows the inhibition radius of the candidate, blue circles show furthest cells
a node in the center cell could conflict with. (In text mentions: pp.20,21)
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1. Decompose into individual fractures

2.Sample individually (possibly parallel)

3.Reassemble and eliminate conflicts

4.Sample matrix

5. Remove
slivers and

repeat

1.Identify boundary and
intersections for faster
acces

2.Sample along boundary

3.Use as seed for sampling

4.When
algorithm
halts find
undersampled
regions and
sample nodes
in there. Repeat
from step 3.

Figure 2.3: Overview of workflow between creation of DFN and final mesh (left) and overview
of workflow during 2D-sampling (right). (In text mentions: pp.20,25)
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variant of ρ(x) given by

ρ(x) = ρ(D(x)) =



ρ2(xp) for D(x) ≤ Fρ2(xp)

A(D(x)− Fr2D(xp)) + H
2 for Fρ2D(xp) ≤ D(x) ≤ ρmax−r2(xp)

A

ρmax otherwise

.

(2.6)

xp the fracture point closest to x and ρ2(xp) is its 2D inhibition radius on the fracture. D(x)

is the distance between x and xp. Like in 2D, this is a piecewise linear function in D(x), which

is constant, if within a distance of ρ2(xp)F (F a parameter) and then increases linearly with

a slope of A until the maximal inhibition radius of ρmax is reached. In addition to rejecting

all candidates y for which (2.4) is violated, we also reject a candidate x, if it is within a

distance of ρ(x)/2 to a boundary or fracture. This both prevents slivers from having three

nodes located on a single fracture or the boundary of the matrix and limits the circumradius

of tetrahedra with circumcenter outside of the matrix (lemma 2.3 and subsequent remark).

A pseudocode of how the 3D-sampling is run from here can be found in Section 2.5.3

in Algorithm 2 . The necessary notation is listed in the table at the start of that section.

As the first sampling process is essentially identical to the 2D version, we will explain the

differences in the initialization and the resampling. At the start, the nodes are initialized

through a Poisson-disk sampling on the boundary of the 3D matrix and the sampling on the

DFN generated by the 2D algorithm (line 2). Neighbor cells can still be used in the same

way as in 2D to speedup the rejection of candidates. Unlike in 2D, a maximal Poisson-disk

sampling does not guarantee sliver-free triangulation, which is why we do not use the cell

lists to find undersampled cells in 3D. Instead, once the algorithm terminates, the resulting

sampling is triangulated (line:10), slivers identified (line:11), and 2 nodes of every sliver (with

a preference for nodes, that are neither on a boundary or a fracture) removed (line 12). While

the definition of a sliver given earlier in section 2.4.2 allows for a bit of leeway in what is

considered a small or large dihedral angle, in practice we successfully replaced tetrahedra with

dihedral angles outside of [8◦, 170◦] and aspect ratios bigger than 0.2. Then the algorithm is
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restarted with the remaining nodes as seed (line 15). This process is repeated til a sliver-free

sampling is obtained(line 16). With this approach we have been able to obtain triangulations

with no elements of dihedral angles of less than 8◦ (presented in next sections). The method

for generating the conforming mesh is similar to that for the 2-dimensional case, but spheres

around triangle cells of the fracture planes are excavated. Additional details are found in [36].

2.5.3 Workflow Overview & Pseudocode for the 2D and 3D

sampling algorithms

The workflow is depicted in Figure 2.3 and contains the following high-level steps: (1)

generation of a DFN using dfnWorks [34], (2) decomposition of DFN into individual polygons,

(3) generation of 2D-variable-radii Poisson-disk samplings on each individual polygon using

algorithm 1 below, (4) construct a conforming Deluanay triangulation as previously described,

(5) merge individual fracture meshes into a sampling on the original DFN, removing conflicting

nodes along intersections, (6) generating a conforming 3D variable radii Poisson-disk sampling

of the surrounding matrix of the DFN using the 2D samplings as seed according to Algorithm

3, (7) triangulate sampling, identify low-quality tetrahedra and remove 2 of their nodes that

are not located on the original DFN, (8) repeat steps 5 and 6 with the remaining nodes

as seed until no more low-quality tetrahedra remain [22]. Replacing step (8) with more

traditional ways of sliver-removal like perturbation [67] or exudation [11] can break the empty

disk property of the sampling.
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Notation for Pseudocodes:

Input:

•D3 ⊂ R3: cubical domain (∗)

•DFN ⊂ D3: generated by DFNWorks (∗)

•Fl ⊂ R3 : l-th fracture of the DFN

•q(1)
l,m and q

(1)
l,m: endpoints of intersection between fractures Fl and Fm

User defined parameters:

•H/2: minimal distance between nodes

•F : HF is range of constant density around intersections

•R: ARH +H/2 is maximal distance between nodes

•A: max. slope of inhibition radius

•k: number of concurrently sampled candidates

Additional notation:

•G: square cells covering Fl with diam(g) ≤ H/2 for all g ∈ G.

•ρ(x): as defined in equation (2.5)(2D) or (2.6) (3D)

•r(x,y): inhibition radius min(ρ(x), ρ(y))

•R(x,y): coverage radius

•C(x) ∈ G: grid cell containing the point x.

•N+(x) : {g ∈ G : dist(C(x), g) ≤ ρ(x)}: cells that can contain points y with

|x− y| ≤ r(x, y)

•N−(x): {g ∈ G : diam(g ∪ C(x)) ≤ ρ(x)
1+A
}: cells, where for all their points y

|x− y| ≤ r(x, y)

•Gocc
⋃

x∈X
N−(x): cells on which X is already maximal.

•T (X): Delaunay triangulation of X (∗)

Output:

•X : Poisson-disk sampling on the l-th fracture

(∗): 3D only
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Algorithm 1 2D Poisson-disk sampling
1: Initializing:
2: X ⊂ Fl ▷ Generate a 1D Poisson-disk sampling with R(x, y) ≤ r(x,y)√

2(1+L)
3: along boundary δFl as seed.
4: for x ∈ X do
5: Gocc ← Gocc ∪N−(x) ▷ Initialize occupied cells
6: end for

7: Sampling:
8: i← 1 ▷ Start sampling at first accepted node.
9: N ← |X| ▷ Will increase as more nodes are accepted

10: while i ≤ N do
11: repeat
12: for j ∈ {1, ..., k} do
13: pj ∈ Fl ▷ Generate k new candidate nodes on the annulus around xi

14: if C(pj) ∈ Gocc then
15: reject pj ▷ Cell already blocked by existing node’s inhibtion radius
16: else
17: for y ∈ N+(pj) do
18: if |pj − y| < r(pj,y) then
19: reject pj ▷ Empty disk property violated
20: end if
21: end for
22: end if
23: if pj was not rejected then
24: X ← X ∪ {pj} ▷ Accept pj and add it to the sampling
25: Gocc ← Gocc ∪N−(pj) ▷ Update occupied cells
26: N ← N + 1 ▷ Ensures sampling around newly accepted nodes
27: end if
28: end for
29: until All k of the pj are rejected
30: i← i+ 1 ▷ Start sampling around next accepted node
31: end while ▷ Terminate here or start resampling
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Continuation of Algorithm 1 (2D Resampling)
1: Resampling:(optional: algorithm terminates, if no resampling is required.)
2: for C ∈ G \Gocc do
3: p ∈ C ▷ Generate a random candidate on each cell
4: for y ∈ N+(p) do
5: if |p− y| < r(p,y) then
6: reject p ▷ Empty disk property violated
7: end if
8: end for
9: if p was not rejected then

10: X ← X ∪ {p} ▷ Accept p and add it to the sampling
11: Gocc ← Gocc ∪N−(p) ▷ Update occupied cells
12: N ← N + 1
13: end if
14: end for
15:
16: Rerun algorithm again from line 10 (i is not reset.)

Algorithm 3 3D Poisson-disk sampling + Resampling
1: Initializing:
2: X ⊂ D3 ▷ Use Algorithm 1 to generate a Poisson-disk sampling on δD3 and the DFN by

using Algorithm 1 (remove conflicting node, when merging samplings.)
3: for x ∈ X do
4: Gocc ← Gocc ∪N−(x) ▷ Initialize occupied cells
5: end for
6: Sampling:
7: The sampling process in 3D works exactly like in 2D with the two only difference being

the following:
• New candidates are generated on a spherical shell instead on an annulus
• A candidate p /∈ δD3 is rejected if dist(p, δD3) < ρ(p)/2

8: Resampling: (optional: algorithm terminates, if no resampling is required.)
9: repeat

10: for T ∈ T (X) do
11: if T is a sliver then
12: X ← X \ {x,y}, where x,y ∈ T are 2 random nodes not contained in the

boundary or the DFN
▷ Minimal distance of nodes to DFN and boundary assures, that this is possible.

13: end if
14: end for
15: Rerun algorithm again from line 6
16: until T (X) contains no more slivers.
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2.6 Results

The following sections will present and discuss numerical results in 2D and 3D.

2.6.1 Two-dimensional Examples

Figure 2.4 shows the triangulation of a variable radius sampling on a simple fracture with 3

intersections. Triangles are colored by their maximal edge length showing how the triangle

size increases as we move further away from the intersections.

In Figure 2.5, we depict the triangulation of a constant-radius sampling on that same

fracture, put back together into the original DFN it originated from. This process does not

influence the overall triangulation quality unless the fractures themselves intersect in an angle

smaller than the angles of triangles in the triangulation.

We show an example from a slightly bigger DFN combining both variable radii Poisson-

disk sampling and the reassembly into its original form in Figure . The network contains 25

fractures whose radii are generated from an exponential distribution with decay exponent of

0.3. There are up to eight intersections on each fracture, but note this is not a constraint

of generation or the sampling technique. The parameters of the inhibition radius are set to

H = 0.1,A = 0.1,F = 1 and R = 40.

The high quality of this particular triangulation is showcased in the histograms in Figure

2.7. Depicted are the distribution of minimal angles (a), maximal angles and the aspect ratios

of the triangulation. We see one triangle each with 25◦ and 26◦ respectively as minimal angles

with all other minimal angles being greater than 27◦. The theoretical minimum angle in a

maximal Poisson-disk sampling with Lipschitz constant A = 0.1 is 27.04◦. The majority of

minimal angles is significantly better still. In terms of the maximal angle, we can observe very

few triangles with angles worse than 110◦ and none worse than 120◦. The greatest maximal

angle theoretically possible in a maximal Poisson-disk sampling with this Lipschitz-constant

would be 125.92◦. The vast majority of aspect ratios is greater than 0.8 with only a marginal

number of triangles having an aspect ratio of less than 0.6 and none below 0.47.
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Figure 2.4: Triangulation of variable radii Poisson-disk sampling on fracture with three
intersections. (H=0.01, R=40, A=0.1, F=1) Triangles colored according to their maximal
edge length. The lines of intersection are shown as spheres. (In text mentions: p.29)

Figure 2.5: Triangulation of a regular Poisson-disk sampling reassembled into the original
DFN. (In text mentions: p.29), (In text mentions: p.32)
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2.6.2 Run Time Analysis

We show an analysis of the run time and quality of the sampling on a DFN for varying

sample sizes, variations of the parameter k, and different numbers of resampling attempts.

All these data points were generated on the same DFN. Different node numbers were achieved

by continuously changing the parameter H, the minimal allowed distance between nodes.

All data points are from independent samplings. The plot in Figure 2.8 shows the run time

prior to resampling process against the number of nodes sampled up to that point. The

color corresponds to the value of the parameter k, which controls the number of concurrent

samples. We see an increase in run time with increasing k, as expected. The run times for

samples with the same k are positioned along straight lines of slope one, indicating a linear

dependence of the total run time and the number of nodes sampled. The red lines in the plot

have a slope of 1 to help visualize this. Figure 2.9 shows the relation between the parameter

k and the run time. Colors correspond to different numbers of nodes. As already established,

the run time increases linearly with the number of nodes sampled. The run time in terms

of k even exhibits a slightly sublinear behavior. The linear fit (black) of the data in this

log-log-plot has a slope of 0.7(9)±0.00(7). While this fitting error of ≈ 9% is not insignificant

it can also clearly be seen by comparing the data to the two lines of slope 1 (red) in the plot,

that the run time does not increase more than linearly with k.

Figure 2.10 depicts a comparison of runtime between our implementation of [14] or [9] for

variable-radii sampling and the same implementation with our adaptation to use the grid

not only to find closeby nodes, but also directly reject candidates. Data points generated by

our adapted algorithm are represented by a filled circle, whereas data points generated by

the original algorithm are shown by empty squares. All data points are colored depending

on k. We can see our algorithm out performs the original for every pair of data points.

This advantage increases with growing k, which makes sense as there are more rejected

candidates the greater k is and our adapted version can handle rejection faster since it does

not have to calculate the distance. For k = 5 the speed difference between the algorithms is

slightly less than a factor of 2, whereas for k = 160 the advantage grows to about an order
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of magnitude. Some comparisons to the sampling algorithm used in dfnWorks [33] prior

to this implementation are shown in table 2.1. This original implementation uses a Rivara

refinement algorithm to generate the nodes of the mesh.

The speedup in run time is presented in Table 2.1. We consider three different DFN

to characterize the difference between the methods. The first is the deterministic network

of four ellipses shown in Fig. 2.5. The second is the network with fractures sampled from

an exponential distribution containing 25 fractures shown in Fig. 2.6. The final network is

composed of a single family of disc shaped fractures whose fracture lengths are sampled from

a truncated powerlaw with exponent 1.8, minimum length 1 m, maximum length 25 m within

a cubic domain wide sides of length 100 m. There are 8417 fractures in this network. In the

first two examples, the mesh was run on a MacBook Pro laptop with 8 2.9 GHz Intel Core i9

processors and 32GB of RAM. The third example was run on a linux server with 64 AMD

Opteron(TM) Processor 6272 (1469.697 MHz) and 252GB of RAM. The mesh resolution and

setup were consistent between the methods. In all cases, the Poisson-Disk method was faster

than the iterative method, and appears to improve in speed-up with number of fractures.

However, the difference in network properties also plays a role in the speedup, a feature that

we do not explore in this study.

2.6.3 Quality and resampling

The maximality of our samples correlates to a high degree to the choice of k, but also to

the number of times the resampling algorithm is run. Depicted in Figure 2.11 are the total

number of nodes sampled after a different number of resamplings. First we can see that the

density of nodes grows with the parameter k. This growth starts out fast for small k and

while not entirely ceasing to increase, slows down notably for higher k. (Note log-scale on x-

axis.) On the lower end of the k scale, resampling increases the node density significantly,

whereas there is barely any difference for higher k > 100. The first resampling is particularly

effective, whereas the difference between each resampling decreases afterwards. Given that

resampling does not take more time then the original sampling process, this turns into an

interesting trade-off between higher k and more repetitions of the resampling that overall

can yield higher performance. A run at k = 5 with few repetition for example, results in a
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Figure 2.6: Triangulation of a variable radii Poisson-disk sampling reassembled into original
DFN. The network contains 25 fractures whose radii are generated from an exponential
distribution with decay exponent of 0.3. Parameters used in the sampled: H = 0.1,R =
40,A = 0.1,F = 1. The mesh contains 23195 nodes and 47367 triangles. The minimal angle
is ≥ 25◦, maximal angle ≤ 120◦, and all aspect ratios are ≥ 0.47. (In text mentions:
pp.29,32)

Table 2.1: Comparison of run time between previous iterative method with presented Poisson
Disk method for mesh generation. In all cases the new method outperforms the iterative
method. (In text mentions: pp.32,32)

DFN Description Deterministic
Ellipses

Exponential
Distribution

Truncated
Power-law

Number of Fractures 4 25 8417
Mesh Resolution Uniform Variable Variable
Number of Processors 4 8 32
Iterative - Run Time 10.64 s 57.23 s 47.47 m
Poisson-Disk - Run Time 4.46 s 9.91 s 6.47 m
Speed-up 2.4 5.8 7.8
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Figure 2.7: Histograms of selected quality measures of the triangulation of variable radii
Poisson-disk sampling on a fracture with three intersections. (H=0.01, R=40, A=0.1, F=1).
(a): minimal angle (≥ 25◦), (b): max angle (≤ 120◦), (c): aspect ratio (≥ 0.47) (In text
mentions: p.29)
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Figure 2.9: Log-log-plot of run time of Poisson-disk sampling algorithm in dependency of
the number of concurrently sampled nodes k prior to the resampling process. Data points
generated over the same DFN, different point densities generated by changing the minimal
inhibition radius H

2 between every pair of nodes. Data points are colored depending on the
total number of nodes sampled. Other parameters are set to A = 0.1, R = 40, F = 1. Linear
fit (black) with slope 0.7(9)± 0.00(7). Comparison to lines of slope 1(red) indicate sublinear
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Figure 2.11: Total number of nodes sampled after resampling plotted in dependence of k
colored by number of resamplings. Data points generated over the same DFN with fixed
minimal inhibition radius. Other parameters are set to A = 0.1, R = 40, F = 1. (In text
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density comparable to a run with more than 10 times higher k without resampling, while

being significantly faster overall. Similar conclusions can be reached when looking at the

quality of resulting triangulations rather than just the density of the Poisson-disk sampling.

Figure 2.12 shows the smallest minimal angle in a triangulation of our sampling for

variable k and different numbers of resampling attempts. We can see for k ⪆ 80 this angle

appears to be at around 25◦ independently of the number of repetitions. The theoretical

bound for a maximal Poisson-disk sampling (with r(x,y) = R(x,y)) for the settings used to

generate these data points would be 27.04◦. Solving the the angle bounds from Lemma 2.2 for

ε shows us that in this sampling R(x,y) ≲ (1+0.1)r(x,y). Given the statistical nature of the

algorithm and the fact that identical inhibition and coverage radii are not quite guaranteed

these results can be considered very good. While the quality of triangulations for smaller k

without resampling is significantly lower, it is noteworthy that just a single repetition fixes

this issue and yields triangulations with qualities on par with those for even significantly

higher k. This allows the algorithm to run at single or low double digit k, perform a single

resampling and generate a triangulation just as good as higher k would have produced in

multitudes of the time.

2.6.4 Three-Dimensional Example

While the majority of our work was aimed at optimizing the 2D sampling on a DFN, we will

conclude with an example where these 2D samplings are combined with a 3D sampling of the

surrounding matrix to showcase that it can be used to produce high quality triangulations in

this case as well. Triangulated output of the 3D algorithm can be seen in Figure 2.14. The

tetradedra are colored according to their maximal edge length to show how the point density

is adapted with the distance to the closest fracture.

Finally, the histograms in Figure 2.13 show the distribution of quality measures of the

tetrahedra in the triangulation depicted in Figure 2.14. For this run, tetrahedra with either a

dihedral angle of less than 8◦ or an aspect ratio of less than 0.2 were discarded before the

sampling algorithm was restarted. The first histogram depicts the distribution of the minimal

dihedral angle of each tetrahedron. As expected no dihedral angle below 8◦ remains, while the

vast majority exceeds values of 30◦. Histogram (b) shows that despite not optimizing with
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respect to the maximal dihedral angle none of these angles exceed 165◦. Histogram (c) shows

a sharp cut-off at 0.2 in the distribution of aspect ratios indicating that the aspect ratio is

likely to have been the driving factor for a majority of the resamplings. The example shown

ran through a sliver-removal and resampling process 17 times to obtain its triangulation

quality. In each of these steps a total of 200 or less out of approximately 50000 nodes

were removed before the resampling. This showcases both the scarcity of slivers in samples

generated through Algorithm 3, as well as that the vertices of these slivers can successfully

be removed and replaced in a way that does not give rise to new slivers.

2.7 Conclusions

We considered 2 algorithms that successfully generate variable-radii Poisson-disk samples on

polygonal regions or networks of polygons and the surrounding space they are embedded in.

Our experiments suggest that mesh quality is comparable in the method previously used

in dfnWorks and the Poisson disk method we feature in this study, however, our algorithm

produces comparable quality meshes in a significantly shorter time.

In our method high quality meshing results through the additional measures introduced

to guarantee a significant degree of maximality. It is worth noting that maximality is reached

for a coverage radius just slightly larger than the inhibition radius. Triangulations of these

samplings show a quality almost matching theoretical quality bounds for maximal Poisson-

disk samplings, in which coverage and inhibition radii coincide. Our key contributions are

summarized as:

1. our algorithm is significantly faster than the previous conforming variable mesh strategies

2. for the fracture networks we achieved mesh quality only marginally worse than what is

theoretically possible,

3. for the volume meshing, slivers can be removed entirely from the domain within certain

bounds

It is worthwhile mentioning that the described algorithms are not only fast, but also

simple to run in a parallel fashion, further improving the overall runtime. Given a DFN, the
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2D-sampling can parallelized by working on each fracture on a different processor. Based on

the grid structure used to accept and reject candidates, both 2D and 3D can also be further

parallelized by dividing their domain into several pieces, that can be sampled individually on

different processors, while needing to communicate only cell information on the boundaries of

the split domains. Once these point distributions are produced, however, the all must reside

on a single processor to connect them into a Delaunay mesh.
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Figure 2.13: Histograms of selected quality measures of the triangulation of variable radii
Poisson-disk sampling on DFN and its surrounding matrix. (H=0.01, R=40,A=0.1,F=1). (a):
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Figure 2.14: (Left) Triangulation of variable radii Poisson-disk sampling of DFN and its
surrounding region. (Right) Close up of the conforming mesh. (H=0.25, R=100, A=0.125,
F=1). Tetrahedra colored according to their maximal edge length. (In text mentions:
pp.37,37)
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Chapter 3

A Hybrid Monte Carlo, Discontinuous

Galerkin method for linear kinetic

transport equations
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3.1 Disclosure

This chapter is, up to formatting identical to the preprint of the same name [23]. The

manuscript is collaborative work with Cory D. Hauck and Ryan G. McClarren. At the time

this disseration is written the article has been submitted to the Journal of computational

Physics and is under review. A preprint is available under https://doi.org/10.48550/

arXiv.2312.04217. The ideas and results presented build on previous work by Cory D.

Hauck and Ryan G. McClarren. Ideas and theoretical results newly presented in this paper

were worked out by Johannes Krotz under their guidance. Numerical experiments presented

were executed by Johannes Krotz using software implemented in Matlab also by Johannes

Krotz. All three cowrote and edited the paper together.

3.2 Abstract

We present a hybrid method for time-dependent particle transport problems that combines

Monte Carlo (MC) estimation with deterministic solutions based on discrete ordinates. For

spatial discretizations, the MC algorithm computes a piecewise constant solution and the

discrete ordinates uses bilinear discontinuous finite elements. From the hybridization of

the problem, the resulting problem solved by Monte Carlo is scattering free, resulting in a

simple, efficient solution procedure. Between time steps, we use a projection approach to

“relabel” collided particles as uncollided particles. From a series of standard 2-D Cartesian

test problems we observe that our hybrid method has improved accuracy and reduction

in computational complexity of approximately an order of magnitude relative to standard

discrete ordinates solutions.

3.3 Introduction

Numerical methods for kinetic transport equations are commonly divided into two classes:

deterministic and Monte Carlo. Each of these approaches has strengths and weaknesses that

complement the other.
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Deterministic methods [25] directly discretize phase space (physical space, direction of

flight, particle energy) as well as time, in the time-dependent setting. For this large seven-

dimensional space (three for physical space, two for direction of flight, one for energy, and one

for time), it is difficult to construct high resolution solutions for general problems. Indeed,

the number of operations and the memory footprint required for deterministic solvers can be

a challenge, even for leadership-class computers.

Monte Carlo methods [35], on the other hand, use sampling techniques to simulate particle

transport processes. In its most basic form, the Monte-Carlo procedure is a computational

analog of the actual physical processes being simulated: particles are sampled from sources

and boundary conditions, then tracked as they stream through the domain, and along the

way undergo scattering or absorption interactions with the material medium. As the particle

traverses the physical domain, it contributes to integrated quantities of interest such as

particle density or net fluence through a surface. For linear problems, the central limit

theorem implies that the Monte Carlo solution is exact in the limit of an infinite number

of samples [35]. Unlike deterministic methods, Monte Carlo methods are easy to extend to

complicated 3-D geometries and can handle physical processes (such as particle interactions

with the background material) in a continuous manner. Nevertheless, the uncertainty in

Monte Carlo methods, as expressed in the standard deviation of an estimate, scales like

N−1/2, where N is the number of sample particles. Additionally, Monte Carlo methods

are not well-suited for obtaining uniform spatial estimates due to the difficulty of getting

sufficient samples in every region of the physical domain. Moreover, for nonlinear problems

such as thermal radiative transfer, the Monte Carlo approach loses some of its attractive

properties. For example the discretization of material temperature, to which the particles

are coupled, means that an exact solution is not obtained in the limit of infinite samples

[44, 12, 27]. Nevertheless, producing efficient, accurate Monte Carlo calculations is an active

area of research [34, 36].

Hybrid methods have been developed to harmonize the benefits of Monte Carlo and

deterministic methods while minimizing their respective drawbacks. For steady-state nuclear

reactor problems, methods such as COMET [28, 45] use local Monte Carlo calculations

to estimate properties of solutions in macroscopic regions of the problem and then use a
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deterministic procedure to couple these regions together. Other work has considered weight

windows and other biasing techniques [38, 6, 7, 39, 29] wherein deterministic solutions are

used to modify the flight of particles in Monte Carlo calculations so that computational

effort is spent more efficiently. High-order low-order (HOLO) schemes [30, 43, 31] have

been developed in which Monte Carlo is used to compute a closure term for a low-order,

moment-based deterministic calculation.

This work presents a deterministic-Monte Carlo hybrid method for time-dependent

problems based on the physics of particle transport. Previous work [21, 9, 10, 22, 41] has

shown that treating particles from the beginning of a step to their first collision with a

high-resolution discretization in angle, and treating the particles after they scatter with a

low-resolution method can give efficient and accurate numerical calculations. Because the

scattering process relaxes particles towards a weakly anisotropic angular distribution, one

can combine methods that are appropriate for particle streaming for the uncollided particles

during a time step with methods that are suitable for weakly anisotropic angular distributions.

In previous work, deterministic methods with a large number of angular degrees of freedom

were used for the uncollided particles while low-resolution deterministic methods were used

for the collided particles. Moreover, it has been shown [41] that the benefits of this splitting

approach extend to multigroup problems by applying a coarser energy and angle discretization

to the collided particles.

Despite the benefits of deterministic hybrid methods, solutions still require a large number

of degrees of freedom for problems with large streaming paths. A natural strategy to address

this challenge, which for steady-state problems was first proposed in [3], is to use Monte Carlo

for the uncollided particles. Indeed, in many respects this is the ideal situation for a Monte

Carlo approach. During a time step, particles are tracked through the computational domain

and a non-analog estimator of the solution known as implicit capture is employed, thereby

avoiding the need to consider collisions at all. Thus the calculation of the contribution to

the solution from uncollided particles is essentially a ray tracing algorithm, which has many

efficient implementations on modern computing hardware [2].

The hybrid method considered here uses Monte Carlo to compute the contribution to the

solution from uncollided particles and an efficient deterministic calculation for the collided
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particles. A key advancement for extending the original steady-state formulation to time-

dependent problems is a remapping step that resamples particles from the deterministic

collided solution back into the uncollided component. This procedure is critical since,

otherwise, the number of uncollided particles will decay exponentially and the hybrid solution

will relax to a low-resolution, deterministic approximation of the collided solution [21]. We find

that the hybrid approach leads to more accurate solutions obtained using lower computational

complexity than pure deterministic calculations. An additional benefit of the hybrid is

that, away from domain boundaries, it reduces to the uncollided discretization, which unlike

standard Monte-Carlo methods, captures the diffusion limit in optically thick regimes [21].

The remainder of the paper is organized as follows. In Section 2, we introduce the hybrid

method in the context of a single-group transport equation that is independent of particle

energy. We also summarize the numerical methods used for the uncollided and collided

components of the hybrid. In Section 3, we present numerical results for several standard

test problems in a reduced two-dimensional geometry in physical space. In Section 4, we

summarize findings and present directions for future work. A short appendix describes the

Monte Carlo implementation of a boundary for one of the test problems.

3.4 Basics of the Hybrid Method

3.4.1 Transport equation

Let X ⊂ R3 be a spatial domain with Lipschitz boundary and let S2 be the unit sphere in

R3. Let Ψ = Ψ(x,Ω, t) be the angular flux depending on the position x = (x, y, z) ∈ X,

the direction of flight Ω ∈ S2 and time t > 0. We assume that Ψ is governed by the linear

transport equation

1
c
∂tΨ + Ω · ∇xΨ + σtΨ = σs

4π ⟨Ψ⟩+Q, x ∈ X, Ω ∈ S2, t > 0, (3.1)

where σt = σt(x), σs = σs(x) and σa = σt − σs are the total, scattering, and absorption

cross-sections of the material, respectively; Q = Q(x,Ω, t) is a known particle source; and
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angle brackets denote integration over the unit sphere:

⟨Ψ⟩ =
∫
S2

Ψ dΩ. (3.2)

The constant c > 0 is the particle speed; we assume that c = 1 for the remainder of this work.

The transport equation (3.1) is equipped with initial conditions

Ψ(x,Ω, 0) = Ψ0(x,Ω), x ∈ X, Ω ∈ S2, (3.3)

and boundary condition

Ψ(x,Ω, t) = G(x,Ω, t) x ∈ ∂X, Ω · n(x) < 0, (3.4)

where Ψ0 and G are known and n(x) is the unit outward normal at x ∈ ∂X.

3.4.2 The hybrid method

The hybrid method is based on a first collision source splitting [3]. Let Ψ = Ψu + Ψc, where

the uncollided flux Ψu and the collided flux Ψc satisfy the following system of equations

∂tΨu + Ω · ∇xΨu + σtΨu = Q, (3.5a)

∂tΨc + Ω · ∇xΨc + σtΨc = σs

4π (⟨Ψu⟩+ ⟨Ψc⟩) . (3.5b)

Due to the linearity of (3.1), the splitting in (3.5) is exact; that is, if Ψu and Ψc solve (3.5a)

and (3.5b), respectively, then Ψu + Ψc solves (3.1). In practice, however, (3.5a) and (3.5b)

are solved at different resolutions or even with different methods. Typically (3.5a) is solved

with a method that has high resolution in angle, and because (3.5a) has no coupling in angle,

it is easier to solve than (3.1) and also easy to solve in parallel. Meanwhile (3.5b) inherits

the angular coupling in (3.1), but typically requires less angular resolution.

Since (3.5a) has no scattering source, particle densities will be transferred into the collided

flux at an exponential rate, thus making the accuracy at which (3.5b) is solved the driving
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factor in the overall accuracy. This effect can be mitigated by abusing the autonomous nature

of the equations and periodically relabelling the collided flux as uncollided at every time step.

To describe the implementation of the hybrid in more detail, let T be an operator such

that

u[t] = T (t, t′, s, υ, b, λt, λs) (3.6)

where u[t](x,Ω) := u(x,Ω, t), satisfies


∂tu+ Ω · ∇xu+ λtu = λs

4π ⟨u⟩+ s, x ∈ X, Ω ∈ S2, t > t′, (3.7a)

u(x,Ω, t′) = υ(x,Ω) x ∈ X, Ω ∈ S2, (3.7b)

u(x,Ω, t) = b(x,Ω, t) x ∈ ∂X, Ω · n(x) < 0, t > t′. (3.7c)

with source s = s(x,Ω, t). Using the operator T , we can write

Ψ[tn+1] = T (tn+1, tn, Q,Ψ[tn], G, σt, σs), (3.8)

Ψu[tn+1] = T (tn+1, tn, Qu,Ψ[tn], G, σt, 0), Qu = Q (3.9)

Ψc[tn+1] = T (tn+1, tn, Qc, 0, 0, σt, σs), Qc = σs

4π ⟨Ψu⟩. (3.10)

We simulate the system (3.5) using a Monte Carlo method for the uncollided equation (3.5a)

and a deterministic discretization of the collided equation (3.5b). Let

TMC(t, t′, s, υMC, b, λt, λs;Np) (3.11)

be the Monte Carlo approximation to (3.7) given a particle representation υMC of υ and using

Np pseudo-particles to represent the distribution of particles in phase space introduced by

the source s over the internal (t′, t). Similarly,

TSN(t, t′, s, v, b, λt, λs;N,Nx) (3.12)

denote the SN -DG approximation of (3.7) using a level N set of ordinates, Nx spatial cells

per dimension with Q1 elements, and a backward Euler time discretization to get from t′ to t.
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(The Monte Carlo method and SN -DG method are presented in more detail below.) Then

given Np, N , and Nx, and a Monte Carlo approximation ψn of Ψ(tn), let

ψn+1
u = TMC(tn+1, tn, Qu, ψ

n, G, σt, 0;Np), Qu = Q (3.13)

ψn+1
c = TSN(tn+1, tn, Qc, 0, 0, σt, σs;N,Nx), Qc = σs

4π ⟨ψu⟩MC (3.14)

Rψn+1
c = TMC(tn+1, tn, Qr, 0, 0, σt, 0;Np), Qr = Qc + σs

4π ⟨ψc⟩SN (3.15)

ψn+1 = ψn+1
u +Rψn+1

c (3.16)

where R is the relabeling operator and ⟨·⟩MC and ⟨·⟩SN denote approximation of the angular

integral over S2 with the respective method. When equations (3.13) through (3.15) are solved

sequentially, ψn+1
u is a Monte Carlo approximation of (3.5a) with initial condition ψn and

Rψn+1
c is a Monte Carlo approximation of (3.5b) with zero initial condition. Thus ψn+1 is a

Monte Carlo approximation of (3.1) with initial condition ψn.

3.4.3 Discrete ordinate-discontinuous Galerkin

The discrete ordinates (SN) method [5] approximates (3.7) by replacing the angular integral

⟨u⟩ by a discrete quadrature and then solving the resulting equation for the angles in the

quadrature. This procedure yields a system of equations that depend only on space and time

and can be further discretized by a variety of methods. Let

{Ωq}NΩ
q=1 and {ωq}NΩ

q=1 (3.17)

be the angles and associated weights of the SN quadrature, where NΩ = NΩ(N) depends on

the specific type of quadrature set being used. After discretizing in angle and applying an

implicit Euler time discretization, the following semi-discrete system is obtained for each
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q ∈ {1, ..., NΩ} and n ∈ {0, 1, 2, . . . },


1

∆t
(
un+1

q − un
q

)
+ Ωq · ∇xu

n+1
q + λtu

n+1
q = λs

4π

NΩ∑
r=1

ωru
n+1
r + sn+1

q , x ∈ X, (3.18a)

un+1
q (x) = bn+1

q (x), x ∈ ∂X−
q , (3.18b)

where ∂X−
q = {x ∈ X : Ωq · n(x) < 0}, bn

q (x) = b(x,Ωq, tn), sn
q (x) = s(x,Ωq, tn), and

un
q (x) ≈ u(x,Ωq, tn) is the approximation on the temporal and angular grid. After reassigning

uq ← un+1
q , sq ← sn+1

q + un
q , λt ← λt + 1

∆t , and bq ← bn+1
q , (3.19)

the discretization in (3.18a) can be written in the equivalent steady-state form


Ωq · ∇xuq + λtuq = λsū + sq, x ∈ X (3.20a)

uq(x) = bq(x), x ∈ ∂X−
q (3.20b)

where u = (u1, . . . , uNΩ)⊤, ū := 1
4π

∑
r
ωrur.

We discretize (3.20a) in physical space with a discontinuous Galerkin method and upwind

numerical fluxes. The method by now is fairly standard (see for example [9, 20]) and

is often used because of its accuracy in scattering-dominated regimes relative to upwind

finite-difference and finite-volume methods [1, 24, 33, 19]. Because the DG method is well-

known, we summarize it only briefly for the case of a two-dimensional Cartesian mesh with

rectangular cells, which is sufficient for all of the numerical tests in Section 3.5. Let X be

divided into open sets Ci,j that are squares with side lengths h centered at (xi, yj), and let

Vh = {v ∈ L2(X) : v|Cij
∈ Q1}. The goal will be to find an approximation of the weak

solution of equation (3.20a); that is, find uh = (uh
1 , . . . , u

h
NΩ

)⊤ ∈ [Vh]NΩ := Vh× · · ·×︸ ︷︷ ︸
NΩ times

Vh such

that

A(i,j)
q (uh

q , v
h
q ) + P(i,j)

q (uh
q , v

h
q ) =M(i,j)

q (uh
q , v

h
q ) +R(i,j)(uh, vh

q ) + S(i,j)
q (vh

q ) + B(i,j)
q (vh

q ) (3.21)
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for all i, j ∈ {1, . . . , Nx}, q ∈ {1, ..., N}, and vh ∈ V NΩ
h . Here

A(i,j)
q (uh

q , v
h
q ) = −

∫
Ci,j

(Ωq · ∇xv
h
q )uh

qdx + λt

∫
Ci,j

vh
q u

h
qdx, (3.22)

P(i,j)
q (uh

q , v
h
q ) =

∫
(∂Ci,j)+

q

(Ωq · n)vh,−
q vh,−

q ds(x), M(i,j)
q (uh

q , v
h
q ) =

∫
(∂Ci,j)−

q

(Ωq · n)vh,−
q uh,+

q ds(x),

(3.23)

R(i,j)(uh, vh
q ) = λs

∫
Ci,j

ūhvh
q dx, S(i,j)

q (vh
q ) =

∫
Ci,j

sqv
h
q dx, B(i,j)

q (vh
q ) =

∫
Ci,j∩∂X−

q

bqv
h
q ds(x),

(3.24)

vh,±
q (x) = lim

ϑ→0+
vh

q (x± ϑn), and (∂Ci,j)±
q = {x ∈ ∂Ci,j : ±Ωq · n(x) > 0} (3.25)

We construct uh = (uh
1 , . . . , u

h
N)⊤ as follows: For each i, j ∈ {1, . . . , Nx} and q ∈ {1, ..., NΩ},

let

uh
q (x) =

∑
|k|∞≤1

α
(i,j)
q,k ϕ

(i,j)
k (x, y), x ∈ Ci,j, (3.26)

where k = (k1, k2),

ϕ
(i,j)
k = Pk1

(
x− xi

h/2

)
Pk2

(
y − yj

h/2

)
, (3.27)

and Pk is the usual Legendre polynomial of degree k on ξ ∈ [−1, 1] with normalization∫ 1
−1 Pk1(ξ)Pk2(ξ)dξ = 2

2k1+1δk1,k2 . Using this representation for uh, we derive the following

linear system for the coefficients α(i,j)
q,k from equation (3.21): For each l such that |l|∞ ≤ 1,

∑
|k|∞≤1

(
A

(i,j)
q,l,k + P

(i,j)
q,l,k

)
α

(i,j)
q,k =

∑
|k|∞≤1

(
M

(i,j)
q,l,kα

(i∗,j∗q)
q,k + R

(i,j)
l,k ᾱ

(i,j)
k

)
+ S

(i,j)
q,l + B

(i,j)
q,l , (3.28)

where ᾱ
(i,j)
k =

NΩ∑
q=1

wqα
(i,j)
q,k ,

A
(i,j)
q,l,k = A(i,j)

q (ϕ(i,j)
k , ϕ

(i,j)
l ), P

(i,j)
q,l,k = P(i,j)

q (ϕ(i,j)
k , ϕ

(i,j)
l ) M

(i,j)
q,l,k =M(i,j)

q (ϕ(i∗,j∗)
k , ϕ

(i,j)
l )

(3.29)

B
(i,j)
q,l = B(i,j)

q (ϕ(i,j)
l ), S

(i,j)
q,l = S(i,j)

q (ϕ(i,j)
l ), R

(i,j)
l,k = R(i,j)(ϕ(i,j)

k , ϕ
(i,j)
l ) (3.30)
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and, given the components n = (nx, ny) of the outward normal, the indices i∗, j∗ are given by

i∗(x) = i+ nx(x) and j∗(x) = j + ny(x). (3.31)

To improve readability, we rewrite equation (3.28) as a matrix equation with respect to the

indices k and l:

(
A(i,j)

q + P (i,j)
q

)
α(i,j)

q = R(i,j)ᾱ(i,j) + M (i,j)
q α(i∗,j∗)

q + B(i,j)
q + S(i,j)

q . (3.32)

The organization of the operators in (3.32) reflects a standard solution strategy combining

source iteration and sweeping. In source iteration, ᾱ(i,j) is lagged; that is, given an iteration

index ℓ:

α(i,j,ℓ+1)
q =

(
A(i,j)

q + P (i,j)
q

)−1 (
R(i,j)ᾱ(i,j,ℓ) + M (i,j)

q α(i∗,j∗,ℓ+1)
q + B(i,j)

q + S(i,j)
q

)
, (3.33a)

ᾱ(i,j,ℓ+1) =
N∑

q=1
wqα

(i,j,ℓ+1)
q . (3.33b)

Sweeping refers to process solving of (3.33) cell-by-cell: for each q, cells can be ordered such

that α(i∗,j∗,ℓ+1)
q is known, prior to solving for α(i,j,ℓ+1)

q . The details of this procedure are given

in Algorithm 4.

3.4.4 Monte Carlo

In this section, we describe the Monte Carlo method used to compute the solution to (3.7)

for the pure absorption problem when λt = λa (i.e. no scattering):


∂tu+ Ω · ∇xu+ λtu = s, x ∈ X, Ω ∈ S2, t > 0, (3.34a)

u(x,Ω, 0) = υ(x,Ω) x ∈ X, Ω ∈ S2, (3.34b)

u(x,Ω, t) = b(x,Ω, t) x ∈ ∂X, Ω · n(x) < 0, t > 0. (3.34c)
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The Monte Carlo method approximates the phase space distribution u using a finite set of

pseudo-particles:

u(x,Ω, t) ≈
∑

π∈Πt

wπ(t)δ(x− xπ(t))δ(Ω−Ωπ), (3.35)

where Πt is a set of pseudo-particles π with position xπ(t), weight wπ(t), and direction of

flight Ωπ. Πt will be defined more carefully below. A benefit of the hybrid is that scattering

processes, which can slow down the method significantly [13], do not need to be modeled in

(3.34).

The Monte Carlo implementation of (3.34) can be derived via a Green’s function

formulation for (3.34). Let G(x,y,Ω, t, t0) solve

∂tG+ Ω · ∇xG+ λtG = δ(x− y)δ(t− t0), (3.36)

with zero initial data and boundary conditions. Then

u(x,Ω, t) =
∫ t

0

∫
R3
G(x,y,Ω, t, t0)s(y,Ω, t0)dydt0 (3.37a)

+
∫ t

0

∫
R3
G(x,y,Ω, t, t0)sv(y,Ω, t0)dydt0 (3.37b)

+
∫ t

0

∫
R3
G(x,y,Ω, t, t0)sb(y,Ω, t0)dydt0 (3.37c)

solves (3.34), where s, sv, and sb are identically zero outside of the closure of X. The terms

sv and sb are provisional source terms designed such that (3.37b) solves (3.34) when s = 0

and b = 0, while (3.37c) solves (3.34) when s = 0 and v = 0. The former is solved by setting

sv(x,Ω, t) = v(x,Ω)δ(t). However, determining sb can be slightly more involved, and an

example that is used for numerical experiments in Section 3.5.3 is provided in the Appendix.

Once s, sv, and sb are known, all three terms can be treated identically. For simplicity, we

restrict our attention to (3.37a) below.
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For any t > t0 and any fixed Ω, let X(t) = x0 +(t− t0)Ω. Then g(t) = G(X(t),y,Ω, t, t0)

solves

dg(t)
dt

= −λ(X(t))g(t) + δ(X(t)− y)δ(t− t0) (3.38)

or, equivalently,

g(t) = e
−
∫ t

t0
λt(X(ξ))dξ

δ(x0 − y). (3.39)

Setting x = X(t) in (3.39) gives

G(x,y,Ω, t, t0) = e
−
∫ t

t0
λt(x−(t−ξ)Ω)dξ

δ(x− (t− t0)Ω− y). (3.40)

Plugging (3.40) back into (3.37a) yields, after some manipulation,

u(x,Ω, t) =
∫ t

0

∫
R3
e

−
∫ t

t0
λt(x−(t−ξ)Ω)dξ

δ(x− (t− t0)Ω− y)s(y,Ω, t0)dydt0

=
∫ t

0
e

−
∫ t

t0
λt(x−(t−ξ)Ω)dξ

s(x− (t− t0)Ω,Ω, t0)dt0

=
∫ t

0
e

−
∫ t

t−τ
λt(x−(t−ξ)Ω)dξ

s(x− τΩ,Ω, t− τ)dτ

=
∫ t

0
e−
∫ τ

0 λt(x−ξΩ)dξs(x− τΩ,Ω, t− τ)dτ.

(3.41)

This representation of u(x,Ω, t) can be interpreted as the density of particles that have

reached the location x at time t while moving in the direction Ω. These particles are emitted

by the source s at time t − τ and location x − tΩ, and they carry a weight that decays

exponentially due to absorption.

The Monte Carlo approach can be understood as an approximation of u based on sampling

of pseudo-particles from the source s in (3.41). Let

s̃(x,Ω, t) =
∑
π∈Π

wπδ(x− xπ)δ(Ω−Ωπ)δ(t− tπ) (3.42)
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where π ∈ Π are pseudo-particles with weight wπ > 0, position xπ ∈ X, and direction of

flight Ωπ ∈ S2 at tπ > 0, such that s̃(x,Ω, t) approximates s(x,Ω, t) for all t > 0. Then for

any C ⊂ X, any B ⊂ S2, and any time interval (tn, tn+1), the representation of u in (3.41),

along with the approximation s̃ gives

∫ tn+1

tn

∫
C

∫
B
u(x,Ω, t)dΩdxdt

≈
∫ tn+1

tn

∫
C

∫
B

∫ t

0
e−
∫ τ

0 λt(x−ξΩ)dξs̃(x− τΩ,Ω, t− τ)dτdΩdxdt

=
∫ tn+1

tn

∫
C

∫
B

∫ t

0
e−
∫ τ

0 λt(x−ξΩ)dξ
∑
π∈Π

wπδ(x− τΩ− xπ)δ(Ω−Ωπ)δ(t− τ − tπ)dτdΩdxdt

=
∑
π∈Π

∫ tn+1

tn

wπe
−
∫ t−tπ

0 λt(xπ+ξΩπ)dξ1C(xπ + (t− tπ)Ωπ)1[0,t](tπ)1B(Ωπ)dt

=
∑
π∈Π

∫ tn+1

tn

wπ(t)1C(xπ + (t− tπ)Ωπ)1[0,t](tπ)1B(Ωπ)dt

(3.43)

where wπ(t) = wπe
−
∫ t−tπ

0 λt(xπ+ξΩπ)dξ and wπ(tπ) = wπ.

Note that with the identification xπ(t) = xπ + (t− tπ)Ωπ we can also identify Πt in (3.35)

as Πt = {π ∈ Π : tπ < t}.

We will denote (3.43) as TMC(tn+1, tn, 0, λs, λs, s, 0;Np) as the Monte Carlo solution for

the case of the zero initial data and zero boundary data. A general Monte-Carlo solution can

be obtained as

TMC(tn+1, tn, s, υ, b, λs, λs;Np) =TMC(tn+1, tn, s+ sb, v, 0, λs, λs;Np)

=TMC(tn+1, tn, s+ sv + sb, 0, 0, λs, λs;Np)

Numerically it is useful to realize that

Πn+1 := Πtn+1 =
{
π(tn + ∆t) : π ∈ Πtn

}
∪ {π ∈ Π : tπ ∈ (tn, tn+1)} (3.44)

where in an abuse of notation π(tn + ∆t) is a new particle with position xπ(t+ ∆t), weight

wπ(t + ∆t) and direction of flight Ωπ for some π ∈ Πtn = Πn. Thus particles Πn+1 can be

obtained by updating the weight and position of particles in Πn and sampling new particles
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with birth times in (tn, tn+1). From (3.43) we also obtain

⟨u⟩MC(x, t) =
∑
π∈Π

∫ tn+1

tn

wπ(t)1C(xπ + (t− tπ)Ωπ)1[0,t](tπ)dt (3.45)

With this formulation, particle weights wπ(t) decrease exponentially at a rate proportional to

the absorption, given by λt. This approach is known as the implicit capture method. It avoids

the need to sample absorption times explicitly and, at the same time, reduces statistical noise

and simplifies the implementation [14, Page 168][26, Chapter 22].

The Monte Carlo simulation of (3.34) from tn to tn+1 is based on (3.43) and proceeds

according to the following steps:

1. Let P be a partition of X into disjoint cells C. For each C ∈ P, calculate the total

weight WC of new particles generated in C by the source during the interval (tn, tn+1):

WC = 1
∆t

1
4π

∫
S2

∫ tn+1

tn

∫
C
s(x,Ω, t) dΩdxdt, (3.46)

where ∆t = tn+1− tn, and let W = ∑
C∈P W

C . Let Np be the input for the total number

of new particles to sample during the interval (tn, tn+1). Then for each C ∈ P , sample

NC
p = floor

[
WC

W

]
(3.47)

particles and assign them each a weight w = W/NC
p . The total number of particles in

the system at this time is Ñn+1
p = Ñn+1

p + ∑
C∈P

NC
p . Each new particle p is assigned a

position xπ sampled uniformly from C and a birth time tn+1 − τπ, where τπ is sampled

uniformly from (0,∆t). Each particle p is also assigned an angle Ωπ. For isotropic

sources, Ωπ is sampled uniformly from S2. For non-isotropic sources, (such as the

boundary source for the holhraum problem in Section 3.5.3), the sampling distribution

must be consistent with the angular dependence. The particles, including their space,

angle, and time coordinates, are added to the current particle list.

2. Move each particle π in the current particle list from xπ to xπ + τπΩπ and update

its weight to wπ ← wπ(tn+1). The number of particles in the system will have to be
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adjusted accordingly. Reset its remaining time to τπ ← ∆t. For each cell C ∈ P,

update the sum in (3.43) and (3.45) according the time spent in C during the interval

(tn, tn+1).

3. To reduce computational effort and memory, at the end of each time step any particle

p with weight wπ < wkill will be dropped with a probability of pkill > 0. Here wkill > 0

is a user-defined parameter, called the ‘killing weight’, and pkill = (1− wπ/wkill). To

preserve the total mass in the system, any particle p with weight w < wkill that survives

this ‘Russian roulette’ [26, Chapter 22] will have its weight readjusted to wπ/(1− pkill).

3.4.5 Pseudocode

The algorithms that we use for our numerical results are detailed in Algorithms 4-7. The

SN method is given in Algorithm 4. The hybrid method is given in Algorithm 7. It requires

Algorithm 4 for the collided component and Algorithm 5 for the Monte Carlo update. A

listing of the notation used these algorithms is provided in Table 3.1.

3.5 Numerical Results

In this section, we compare simulation results from the Monte Carlo-SN hybrid method to

those from a standard, monolithic SN method. The goal is to demonstrate that the hybrid

method provides a more efficient approach. The SN computations for the monolithic method

and for the collided component of the hybrid rely on product quadrature sets on the sphere

[40, 4].

We consider three well known test problems: the line source problem [17], the lattice

problem [8], and the linearized hohlraum problem [9, 8]. The specifications for each problem

are provided in the following subsections. They are all formulated in a geometry for which

∂zΨ = 0. This means that they can be reduced to two dimensions in physical space and, by an

abuse of notation, we write Ψ(x,Ω, t) = Ψ(x, y,Ω, t). A further consequence of the geometry

is that product quadrature on the sphere can be reduced to just the upper hemisphere, in

which case NΩ = N2. The time step for each problem is tied to the grid resolution via
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Table 3.1: Pseudocode parameters (In text mentions: p.67)

User defined parameters
Nx number of Cartesian cells along each dimension
N order of discrete ordinates
Np number of new particles (up to rounding)

generated from source
∆t time step
δ tolerance of iteration
ωq Gauss-Legendre weights

Material parameters
λt, λa, λs total, absorption and scattering crosssection

Additional notation
A(i,j)

q ,P (i,j)
q ,R(i,j),M (i,j)

q ,B(i,j)
q ,S(i,j)

q matrices defined in Section 3.4.3
U(X) uniform distribution on set X.
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Algorithm 4 SN-algorithm: Propagate solution from tk to tk+1

Input: un, sq ▷ coefficients of solution uk
q from previous step and source

Require: λ̂t, λa, λs, ▷ Material properties
Require: ∆t, {Ci,j}Nx

i,j=1, {Ωq, wq}NΩ
q=1 ▷ Discretization parameters

Require: δ ▷ Convergence tolerance
1: α(i,j)

q (tn) such that un
q (x) = ∑

|k|∞≤1
α

(i,j)
q,k ϕ

(i,j)
k (x) for x ∈ Ci,j

2: sq ← sq + 1
∆t

αq(tn) ▷ Initialize source
3: αq ← αq(tn) ▷ Initialize coefficients
4: err = δ + 1
5: while err > δ do
6: βq ← αq ▷ Store old coefficients

7: ᾱ←
NΩ∑
q=1

wqαq

8: for q ∈ {1, ..., NΩ} do
9: for (i, j) ∈ {1, ..., Nx}2 do ▷ Sweep through cells in direction Ωq

10: α(i,j)
q ←

(
A(i,j)

q + P (i,j)
q

)−1 (
R(i,j)β̄(i,j) + M (i,j)

q α(i∗,j∗)
q + B(i,j)

q + S(i,j)
q

)
▷ Update coefficients

11: end for
12: end for
13: err = max

q
||αq − βq||∞ ▷ Discrepancy between iterations

14: end while
15: return un+1

q (x) = ∑
|k|∞≤1

α
(i,j)
q,k ϕ

(i,j)
k (x), ⟨un+1

q ⟩SN(x) = ∑
|k|∞≤1

ᾱ
(i,j)
k ϕ

(i,j)
k (x) for x ∈ Ci,j
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Algorithm 5 MC-algorithm: Propagate solution form tk to tk+1

Input: Πn+1 with un(x,Ω) = ∑
π∈Πt

wπδ(x− xπ)δ(Ω−Ωπ)

s(x,Ω, t) ▷ previous particle distribution and source
Require: λt
Require: ∆t, {Ci,j}Nx

i,j , Np ▷ Discretization parameters
Require: wkill ▷ killing weight

1: for (i, j) ∈ {1, . . . , Nx}2 do

2: WCi,j = 1
|Ci,j |∆t

tn+1∫
tn

∫
Ci,j

∫
S2
s(x,Ω, t)dΩdxdt

3: end for
4: W ← ∑

i,j
WCi,j ▷ Calculate total source

5: for (i, j) ∈ {1, . . . , Nx}2 do
6: N

Ci,j
p ←

⌊
W Ci,j Np

W

⌋
▷ Number of particles on each cell

7: end for
8: Np ←

∑
i,j
N

Ci,j
p ▷ number of new particles

9: w ← W
Np

10: for (i, j) with N
Ci,j
p > 0 do ▷ sample new particles from source

11: for k ∈ {1, ..., NCi,j
p } do

12: Generate new particle π with
13: xπ ∼ U(Ci,j) ▷ Draw particle’s position

14: (Ωx,Ωy,Ωz) ∼ 1
W Ci,j |Ci,j |∆t

tn+1∫
tn

∫
Ci,j

s(x,Ω, t)dxdt ▷ Draw particle’s direction of

flight
15: Ωπ ← (Ωx,Ωy)
16: wπ ← w ▷ Assign particle weight
17: Π∗ ← Π∗ ∪ {π} ▷ Add new particle to existing
18: end for
19: end for
20: for π ∈ Πt ∪ Π∗ do ▷ Move particles
21: if π ∈ Πt then
22: τπ ← ∆t ▷ remaining time for particles from prev. step
23: else
24: randomly draw τπ ∼ U([0,∆t]) ▷ remaining time for particles
25: end if
26: xπ ← xπ + τπΩπ ▷ Update particle’s position
27: for (i, j) with Ci,j ∩ {xπ + tΩπ : t ∈ [0, τπ]} ≠ ∅ do ▷ All cells intersected by

particle’s trajectory
28: Φi,j ← Φi,j + wπ

∫ τπ
0 exp

(
−
∫ t

0 λa(xp + t′Ωp)dt′
)
1Ci,j

(xπ + tΩπ)dt ▷ Update Φ
29: end for
30: wπ ← wπ exp (−

∫ τπ
0 λa(xπ + tΩp)dt) ▷ Update particle weight

31: if xπ ∈ X then
32: Πn+1 ← Πn+1 ∪ {π} ▷ Remove particles that left domain
33: end if
34: end for 70



Continuation of Algorithm 5 (Russian Roulette)
1: for π ∈ Πn+1 with wπ < wkill do ▷ Russian roulette
2: r ∼ U([0, 1])
3: if r > wπ

wkill
then ▷ Determine survival of particle

4: Πn+1 ← Πn+1 \ {π}
5: else
6: wπ ← wkill ▷ Update surviving particle’s weight to approx. preserve total mass
7: end if
8: end for
9: return Πn+1 with un+1(x,Ω) = ∑

π∈Πn+1
wπδ(x− xπ)δ(Ω−Ωπ) and ⟨un+1⟩MC(x) = Φ(x)

Algorithm 7 HMC-SN-algorithm: Propagate solution from tk to tk+1

Input: Πn with un(x,Ω) = ∑
p
wpδ(x− xp)δ(Ω−Ωp)

s(x,Ω, t) ▷ previous particle distribution and source
Require: λ̂t, λt, λa, λs, ▷ Material properties
Require: ∆t, {Ci,j}Nx

i,j=1, {Ωq, wq}NΩ
q=1, Np ▷ Discretization parameters

Require: δ, wkill ▷ Convergence tolerance and killing weight
1: Πn+1

u , ⟨un+1
u ⟩MC ← MC(Πn, s) ▷ Monte Carlo for uncollided

2: for q ∈ {1, ..., NΩ} do
3: sq ← λsΦu ▷ turn ⟨un+1

u ⟩MC into source for Sn
4: end for
5: un+1

c , ⟨un+1
c ⟩SN ← Sn(0, sq) ▷ Sn for collided

6: s← λs(⟨un+1
c ⟩SN + ⟨un+1

u ⟩MC) ▷ sources for Relabeling
7: ΠR, ⟨un+1

R ⟩MC ← MC(0, s) ▷ Monte Carlo as relabeling
8: Πn+1 ← Πn+1

u ∪ ΠR

9: ⟨un+1⟩MC ← ⟨un+1
u ⟩MC + ⟨un+1

R ⟩MC
10: return Πn+1, ⟨un+1⟩MC
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the ratio CFL = ∆t/∆x. For all calculations shown below, the iteration tolerance δ (see

Algorithm 1) is set to 10−4.1

For each problem, we assess the accuracy of the numerical solution and the efficiency

with which it is obtained. To quantify the accuracy we compare our results to a reference

solution. For the line source problem the reference is the semi-analytic solution from [18]; see

also [17]. For the other two test problems, the reference is a high-resolution hybrid solution

based solely on SN discretization with a triangular-based quadrature referred to as TN [37]

for both collided and uncollided component, combined with a DG discretization in space and

integral deferred correction in time [11].

Accuracy for the MC-SN hybrid and the monolithic SN method is measured in terms of

the relative L2-difference in the scalar flux Φ = ⟨Ψ⟩ at a given final time tfinal. Given the

numerical solution Φnum and the reference Φref:

∆ = ||Φ− Φref||L2

||Φref||L2

, (3.48)

where L2-norm is approximated by h2∑
Ci,j

Φ2
ij and Φi,j is the average on the cell Ci,j . Because

our implementation of the hybrid method and the SN method are not run-time optimized,

we use a complexity measure which counts the number of times a particle is moved or a DG

unknown is updated in the course of a sweep. Let N c be the level of the quadruature for the

collided component of the hybrid. Then the complexity of the monolithic method is

CSN
= 4

↑
# of

Legendre

coefficients

× NΩ

↑
# of

ordi-

nates

× N2
x

↑
# of

cells

× Ni

↑
# of

source

iterations

× T

∆t
↑

# of

time

steps

(3.49a)

1While not shown here, we also tested several runs using δ = 10−8, which leads to negligible improvements
in accuracy when compared to the results shown below.
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while the complexity of the hybrid is

Chybrid = (Nu

↑
avg. # of

particles

moved for

uncollided

+ NR

↑
avg. #

particles

moved in

relabelling

) × T

∆t
↑

# of time

steps

+ CSNc

↑
SN

complexity

of collided

equation

(3.49b)

For convenience, we set N tot
MC

= (Nu +NR) T
∆t

so that Chybrid = N tot
MC

+ CSNc . Nu is the

sum of particles added to the system Np and the average number of particles still in flight

from the previous time step Nprev, i.e. Nu = Np +Nprev, while NR is the number of particles

added in the relabeling, which we set to be NR = Np.

3.5.1 The Line Source problem

In the line source problem, an initial pulse of uniformly distributed particles is emitted from

the line ℓ = {(x, y, z) : x = y = 0} into the surrounding domain X = R3, which contains a

purely scattering material with σs = σt = 1. Because the geometry of the domain and initial

condition are invariant in z, the spatial domain can be reduced to R2. In this two-dimensional

setting, the initial condition can be represented by an isotropic delta function 1
4π
δ(x, y), but

to reduce numerical artifacts, we use a mollified version of the initial condition:

Ψ0(x, y,Ω, t) = 1
4π

1
2πς exp

(
−x

2 + y2

2ς

)
, ς = 0.03. (3.50)

Meanwhile, the computational domain is restricted to the square [−1.5, 1.5]2 and equipped

with zero inflow boundary conditions.

We perform monolithic SN and MC-SN hybrid simulations at various spatial and angular

resolutions. The spatial domain is subdivided into equal Nx × Nx square cells with Nx ∈

{51, 101, 201}. For the SN -runs we let N ∈ {4, 8, 16, 32}, resulting in NΩ = N2 ordinates on

the northern hemisphere of S2. The collided part of the hybrid algorithm employs an SN
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method with N ∈ {4, 8}. In the hybrid method the number of particles was also changed

between runs.

At time t = 0 an initial pulse of Np particles distributed according to (3.50) is added to

the system. Since the source term is zero, new particles are only added due to relabeling.

The number of particles newly inserted into the system is roughly Np per time step where

Np = 10k and k ∈ {2, 3, 4, 5, 6}.

Due to rounding and particles being dropped via Russian roulette, the exact number of

particles inserted into the system varies slightly. The killing weight is fixed at wkill = 10−15.

The CFL is also fixed at 0.5 across all runs. The reference solution is the semi-analytic

solution from [18]; see also [17].

Figure 3.1 depicts several approximations of the scalar flux Φ at tfinal = 1, calculated using

the SN method and the hybrid method. The solutions calculated using the SN method clearly

show ray-effects that only get resolved after a significant increase in the angular resolution.

No such effects are seen in the hybrid solutions. The hybrid solutions do contain some noise,

as the particle count is relatively low, but they preserve the symmetry of the problem up to

a reasonable error. Unlike the SN -method, the hybrid is able to capture the wave front of

unscattered particles travelling away from the center with speed 1.

Figure 3.2 shows L2-errors of the numerical solutions in log scale; the same trends are

apparent. While the hybrid solutions mainly suffer from noise due to the stochastic nature of

the Monte Carlo method, the SN method has strong ray-effects and struggles to capture the

analytic solution at the wave front.

A more systematic analysis of the numerical results is presented in Figure 3.3. This

plot shows the relative L2-error ∆ of various runs versus their respective computational

complexity C. For the hybrid method, increasing the angular resolution N in the collided

component yields a marginal improvement at best. However, changes in the particle number

Np for the uncollided component have a significant impact. For the SN method, on the other

hand, increasing the angular resolution yields a significant improvement in the accuracy. For

smaller values of N , increasing the spatial resolution may actually increase the error. This is

especially apparent in Figure 3.3 for the S4 and S8 results. For a fixed angular resolution,

additional spatial accuracy will begin to resolve the ray effect anomalies in the solution.
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Conversely, SN results with lower spatial resolution benefit from error cancellation due to

the numerical diffusion smoothing ray effects. The hybrid may also have larger errors if the

particles per cell is too low.

Overall the hybrid method outperforms the monolithic SN method. For example, the

hybrid error can match the most refined SN calculation (N = 32) with a complexity that

is roughly 2-3 orders of magnitude smaller; compare Figures 3.2 (c) and (d). In fact the

hybrid method can obtain an error with half the size with a complexity that is an order of

magnitude less. In general hybrid runs tend to be 3-4 times more accurate than their SN

counterparts of similar complexity.

3.5.2 The Lattice problem

In the lattice problem, a checkerboard of highly absorbing material is embedded in a scattering

material with a central source. The layout of this problem along with its material parameters

can be found in Figure 3.4. The computational domain is a 7× 7 rectangle with zero inflow

data at the boundaries. The center square (red) contains an isotropic particle source, while

the blue squares are pure absorbers. The red and white squares are purely scattering with

σs = σt = 1. The initial condition is identically zero everywhere in the domain.

We perform SN and hybrid runs with varying spatial and angular resolution. The spatial

domain is subdivided into equal Nx × Nx square cells with Nx ∈ {56, 112, 224}. For the

SN -runs we use N ∈ {4, 8, 16, 32}, resulting in NΩ = N2 ordinates on the northern hemisphere

of S2. The collided part of the hybrid algorithm employs an SN method with N ∈ {4, 8}. In

the hybrid method the number of particles is also changed between runs. The number of

particles newly inserted into the system every time step is roughly 2×Np where Np = 10k for

k ∈ {2, 3, 4, 5, 6}. 2 The killing weight is fixed at wkill = 10−15. All runs are performed to a

final time of tfinal = 3.2 and the CFL is kept fixed at 25.6. The reference solution is a S96-S16

hybrid (meaning a S96 for the uncollided component and S16 for the collided component)

using a TN quadrature in angle, a third-order DG method in space on a 448 by 448 grid, and

a defect correction time integrator [10].
2The factor of 2 is because Np particles are used for the uncollided equations (3.13) and Np particles are

used for the relabelling (3.15).
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Figure 3.1: Numerical approximation of the scalar flux Φ for the line source problem at
tfinal = 1 with CFL 0.5. Each numerical solution is characterized by a relative L2 difference
∆ with respect to the reference, defined in (3.48), and a complexity C, defined in (3.49a) for
the monolithic SN method and (3.49b) for the hybrid. (In text mentions: p.74)
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Figure 3.2: Absolute difference between the analytical solution and various numerical solutions
to the line source problem at t = 1 with CFL 0.5. Each numerical solution is characterized by
a relative L2 difference ∆ with respect to the reference, defined in (3.48), and a complexity
C, defined in (3.49a) for the monolithic SN method and (3.49b) for the hybrid. (In text
mentions: pp.74,75)
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Selected results for the scalar flux Φ are depicted in Figure 3.5, and the relative L2-error for

these same solutions is depicted in Figure 3.6. While the hybrid solutions are not completely

free of ray-effects, these effects are much more pronounced in the SN runs. A more rigorous

analysis of the performance of the two algorithm in dependence of their respective parameters

can be seen in Figure 3.7. This plot shows the relative error ∆ of various runs in dependence

of their complexity C. It is noteworthy that for this test problem the accuracy is mostly

independent of the angular resolution, but depends significantly on the spatial resolution.

Increasing the overall particle count in the hybrid method is most effective at higher spatial

resolution; compare for example the vertical separation in colored triangles vs. colored circles

vs. colored squares in Figure 3.7.

It turns out that increasing the number of particles in the hybrid algorithm does not

necessarily increase the algorithm complexity. This is because with increased particle count

the iterative solver for the collided components often needs fewer iterations. In cases where

the complexity is dominated by these iterations, an increase in particles can even cause a

decrease in computational complexity. Overall, Figure 3.7 shows that the hybrid algorithm

produces results with comparable or slightly better accuracy than the standard SN solver,

while being close to an order of magnitude of lower complexity.

3.5.3 The linearized hohlraum problem

In the linearized hohlraum problem [9], nonlinear coupling between particles and the material

medium is approximated in a linear way by adjusting the absorption and scattering cross-

sections according to the expected material temperature profile of the nonlinear problem [8].

The geometry of the setup along with the material parameters can be found in Figure 3.8.

The domain is X = [0, 1.3]× [0, 1.3], and the initial condition is identically zero everywhere.

For boundary conditions, we assume a constant influx from the left side of the domain, i.e.

Ψ(x = 0, y,Ω, t) = 1 for Ωx > 0. As discussed in the appendix, this boundary condition can

be treated as a surface source, modeled by setting Ωx =
√
ξ, where ξ ∼ U([0, 1]) is sampled

uniformly on [0, 1]. The spatial distribution along the boundary is sampled uniformly.

We again perform SN and hybrid runs with varying spatial and angular resolution. The

spatial domain is subdivided into equal Nx ×Nx square cells with Nx ∈ {52, 104, 208}. For
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the SN -runs we use N ∈ {4, 8, 16, 32}, resulting in NΩ = N2 ordinates on the northern

hemisphere of S2. The collided part of the hybrid algorithm employs an SN method with

N ∈ {4, 8}. In the hybrid method the number of particles is also changed between runs, but

the killing weight remains fixed at wkill = 10−15. The number of particles newly inserted into

the system every time step is 2× 10k for k ∈ {2, 3, 4, 5, 6}. All runs are performed to a final

time of tfinal = 2.6 and the CFL is kept fixed at 52. The reference solution is a S96-S16 hybrid

using a TN quadrature in angle, a third-order DG method in space on a 448× 448 grid, and

a defect correction time integrator [10].

In Figure 3.9, we show densities of a few select runs, calculated using SN and hybrid

methods. The log of the corresponding relative L2-errors are depicted in Figure 3.10. As

before, the SN solutions suffer from ray-effects that are marginally reduced as the number

of angle increases. Meanwhile, most of the disparities between the reference and hybrid

solutions can be attributed to stochastic noise. The hybrid has a mix of ray effects from the

collided equation solve and particle tracks from the uncollided equation solve on the backside

of the hohlraum However, these errors here are on the order of 10−2-10−3, which is much

smaller than the errors in othe back of the domain.

Detailed comparisons between the relative error against the computational complexity are

depicted in Figure 3.11. As before, increasing the angular resolution in the collided equation

does not benefit the accuracy of the hybrid method. Increasing particles also has less effect

than in the previous problems. The SN solutions benefit most from finer spatial resolution,

while the angular resolution does not matter as much. Spatial resolution also plays the

biggest role for the hybrid. We do observe that for small particle counts (the purple points

in the figure) increasing resolution can actually increase the error. This is explained by the

fact that an under-sampled MC calculation does not benefit from more spatial resolution.

Nevertheless, for a fixed spatial resolution, we do observe an improvement in the error when

Np is increased.

Overall the hybrid runs produce solutions with comparable or better accuracy than

monolithic SN runs with the same spatial resolution. Hybrid runs using S8 for the collided

equation achieve improved accuracy at nearly the same complexity while runs using S4 for

the collided equation achieved improved accuracy with even less complexity.
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3.6 Conclusion and Discussion

In this work, we have presented a collision-based hybrid method that uses a Monte Carlo

method for the uncollided solution and a discrete ordinate discretization for the collided

solution. This combination of methods was originally proposed for the first collision source

strategy used in [3] in the steady-state setting. Thus this work can be considered as an

extension to the time-dependent setting that requires a remap procedure after every time

step.

Experimental simulations have been performed on three standard benchmarks. For each

benchmark, the results demonstrate that the hybrid method is more efficient, in the sense that

it achieves greater accuracy with the comparable or less complexity or is less complexity with

comparable or greater accuracy. Here complexity is a measure of how many unknowns are

updated during particle moves for Monte Carlo or sweeping iterations for discrete ordinates.

This work has concentrated on single-energy particle transport problems. However recent

work has shown that when considering energy-dependent problems, more opportunities for

hybridization arise when considering fully deterministic hybrids [42]. In those results it

was shown that low-resolution in energy can be used for the collided solution as well as

low-resolution in angle. With the introduction of Monte Carlo, new opportunities arise. For

example, continuous energy cross-sections could be used in the uncollided portion. This

could be important to treat resonances in neutron transport problems, but investigation

is needed to quantify any benefits from this approach. The methodology here may also

be extended to nonlinear RTE using standard linearization strategies, although corrections

will need to be introduced to handle energy temperature dependent opacities. In addition

future investigations should be made regarding the use of Monte Carlo techniques inside the

high-order time accuracy methods developed for hybrid problems in [9, 10].

Finally, a clear strategy for choosing of discretization parameters does not exist at this

point. The selection of spatial and temporal discretization parameters is much like any

other method. However, the appropriate choice for the relative degrees of freedom in angle

between the uncollided and collided equation is not clear; nor is the time interval to wait

until the relabeling is performed. While some work exists to understand errors introduced by
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the hybrid [16], the analysis is quite involved, even for a very simple case. Thus, the best

approach is most likely an adaptive strategy based on a-posteriori estimates. This will be the

topic of future work.
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Figure 3.5: Numerical solutions to the lattice problem at t = 3.2 with CFL 25.6. Each
numerical solution is characterized by a relative L2 difference ∆ with respect to the reference,
defined in (3.48), and a complexity C, defined in (3.49a) for the monolithic SN method and
(3.49b) for the hybrid. (In text mentions: p.79)
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Figure 3.6: Lattice problem: Absolute difference between the reference solution and various
numerical solutions at t = 3.2 with CFL 25.6. Each numerical solution is characterized by a
relative L2 difference ∆ with respect to the reference, defined in (3.48), and a complexity
C, defined in (3.49a) for the monolithic SN method and (3.49b) for the hybrid. (In text
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Figure 3.9: Numerical solutions to the hohlraum problem at t = 2.6 with CFL 52. Each
numerical solution is characterized by a relative L2 difference ∆ with respect to the reference,
defined in (3.48), and a complexity C, defined in (3.49a) for the monolithic SN method and
(3.49b) for the hybrid. (In text mentions: p.80)
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Figure 3.10: Hohlraum problem: Absolute difference between analytical solution to the line
source problem and various numerical solutions at t = 2.6 with CFL 52. Each numerical
solution is characterized by a relative L2 difference ∆ with respect to the reference, defined
in (3.48), and a complexity C, defined in (3.49a) for the monolithic SN method and (3.49b)
for the hybrid. (In text mentions: p.80)
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Figure 3.11: The relative L2-difference ∆ vs. complexity C for the scalar flux Φ in the
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given by (3.49a) for the monolithic SN method and by (3.49b) for the hybrid. (In text
mentions: p.80)
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Appendix: Boundary conditions for the Hohlraum

problem

Unlike the line source and lattice problems, the linearized hohlraum problem involves non-zero

boundary conditions. A Monte Carlo implementation of this boundary condition is stated in

[15]; here we present a derivation of the approach that is used.

In the hohlraum problem, it is assumed that Ψ(x, y, t,Ω) = 1 for x = 0 and Ωx > 0, i.e., a

constant flux of 1 along the left boundary is assumed for each incoming direction. To model

this with Monte Carlo, we assume that this flux is due to a source sb (see (3.37c)) located on

an infinitesimal slab just left of the boundary.

Consider first a finite slab Sa = {(x, y) ∈ [−a, 0]× [0, 1.3]}, where a > 0. We assume that

σa = σs = 0 on S, that the source sb(x, y,Ω; a) = sb(x,Ω; a) is independent of y and t, and

that

ŝb(Ω) :=
∫ 0

−a
sb(x,Ω; a)dx (3.51)

is independent of a. Thus, sb(x,Ω, t) → ŝb(Ω)δ(x) as a → 0. To determine ŝb, we assume

that Ψ is independent of y and t on S and satisfies the steady-state equation

ΩxΨx(x, y,Ω) = sb, (x, y) ∈ S, Ω ∈ S2, (3.52a)

Ψ(−a, y,Ω) = 0, y ∈ [0, 1.3], Ωx > 0. (3.52b)

This formulation is consistent with (3.34), given the assumptions made on Ψ, sb, and the

material cross-sections. Integrating (3.52b) with respect to x and applying the boundary

condition in (3.52b) gives

ŝb(Ω) = Ωx, Ωx > 0. (3.53)

Hence sb = Ωxδ(x).
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Finally, to sample particles according to the probability density ρ(Ωx) ∝ ŝb for Ωx > 0,

we compute the cumulative distribution function (CDF):

F (Ωx) =
∫ Ωx

0
2µdµ = Ω2

x. (3.54)

According to the fundamental theorem of simulation [32, pp. 19-22], the correct angular

distribution can be sampled by generating uniform variables u ∈ [0, 1] and setting Ωx =

F−1(u) =
√
u.
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Chapter 4

A Likelihood Approach to Filtering for

Advection Diffusion Processes
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4.1 Disclosure

This chapter is, up to formatting, identical to the manuscript of the same name [8]. The

manuscript is collaborative work with Jorge. M. Ramirez and Juan M. Restrepo and at the

time this document is written under review in the journal Monthly Weather Review. The

ideas and results presented build on previous work by Juan M. Restrepo. New ideas and

results presented were worked out by Johannes Krotz under guidance of Juan M. Restrepo

and Jorge M. Ramirez. The manuscript was cowritten with Juan M. Restrepo and Jorge

Ramirez.

4.2 Abstract

A Bayesian data assimilation scheme is formulated for advection-dominated advective and

diffusive evolutionary problems, based upon the Dynamic Likelihood (DLF) approach to

filtering. The DLF was developed specifically for hyperbolic problems –waves–, and in this

paper, it is extended via a split step formulation, to handle advection-diffusion problems.

In the dynamic likelihood approach, observations and their statistics are used to propagate

probabilities along characteristics, evolving the likelihood in time. The estimate posterior thus

inherits phase information. For advection-diffusion the advective part of the time evolution

is handled on the basis of observations alone, while the diffusive part is informed through

the model as well as observations. We expect, and indeed show here, that in advection-

dominated problems, the DLF approach produces better estimates than other assimilation

approaches, particularly when the observations are sparse and have low uncertainty. The

added computational expense of the method is cubic in the total number of observations

over time, which is on the same order of magnitude as a standard Kalman filter and can be

mitigated by bounding the number of forward propagated observations, discarding the least

informative data.
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4.3 Introduction

A general framework in Bayesian estimation to assimilate observations and model predictions

has become known as data assimilation. Models are used to inform a prior and observations

inform the likelihood. For time-dependent problems, the estimation objective is to find the

evolution of moments of the posterior of a time-dependent state variable, conditioned on

observations. A variety of computational methodologies have been proposed to accomplish

this (see [17] and references therein). In linear problems with Gaussian noise processes,

the variance minimizer estimate of the time-dependent mean and variance of the posterior

can be obtained sequentially by the Kalman Smoother [12] or partially by the Kalman

Filter (KF) [7]. Kushner, Stratanovich, Pardoux (see, for example, [9]) proposed a variance

minimizer estimate for the nonlinear/non-Gaussian problem, however, it is computationally

tractable only for very low-dimensional state variable problems. Successful approximations

of the estimate can sometimes be obtained via generalizations like the Extended Kalman

Filter [10, 18], or the Unscented Kalman Filter [6], among others. Sample estimates can

be approximated via the Ensemble Kalman Filter [3, 4] and its variants, the path integral

method [1], and various particle filter schemes [11, 2, 14]. There are estimators that have

special properties (see [15]) or that exploit the underlying dynamics of the problem. An

example of the latter is the the dynamic likelihood filtering approach (DLF), first proposed

in [13].

The DLF is denoted an "approach" rather than a filtering method because, in principle, it

applies to any of the linear or nonlinear data assimilation methodologies. It was developed

specifically for problems in wave dynamics, in general, hyperbolic partial differential equations.

The crux of the DLF approach is to modify the conditional, posterior distribution of the

state variable by exploiting a property peculiar to wave problems: finite-time propagation of

information, which is utilised to propose a dynamic likelihood. A second aspect of DLF is

that it tracks the state variables of the partial differential equation along characteristics, thus

obtaining stochastic differential equations. Peculiarities of the DLF approach are that phase

information enters directly into the estimation, and that we can make Bayesian estimates

at times when observations are available and when they are not (even in the near future).
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The main practical advantage of the method is that it addresses the more common situation

in wave problems: sparse observation networks that are, nevertheless, fairly low in noise.

Under these circumstances, as was shown in [5], the DLF produces superior estimates when

compared to the best traditional estimator.

In this paper, we develop the dynamic likelihood approach for data assimilation problems

in transport modeled by forced advection-diffusion equations. We thus expand the range of

applicability of this estimation approach to an important class of dynamics. We will focus on

finding estimates of quantities of interest when the source of uncertainties appears in the

advection process and the forcing. The statement of the problem appears in Section 4.4.

The DLF evolves the likelihood forward in time along characteristics by generating pseudo-

observations at times between actual observations. A pseudo-observation is derived from a

real observation at a previous time. The pseudo-observation framework appears in Section

4.5.1. This section also details how the DLF approach applies to the advection-diffusion

dynamics, using techniques and ideas similar to a Kalman Filter.

To appreciate the practicality of the methodology, we present in Section 4.6 an accounting

of the cost of implementing the DLF on a sequential estimator data assimilation method. In

Section 4.7.2, we compare the DLF approach proposed for advection-diffusion problems to

the outcomes obtained via a Kalman Filter because the Kalman estimates for this problem

are familiar, optimal, and easily understood. A discussion and conclusions appear in Section

4.8.

4.4 Statement of the Problem

At issue is the estimation of the posterior covariance of a noisy scalar state variable u(x, t)

given noisy observations, and the minimization of its trace. Here and throughout, x denotes

space and t, time, The state variable obeys a noisy advection-diffusion initial value problem.

We will develop a DLF approach to a particular filtering estimation scheme. We focus on

linear dynamics since it allows us to evaluate the DLF approach in comparison with optimal

filtering schemes, nevertheless, we argue that the development presented herein will extend

to a number of nonlinear cases.
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We are motivated to consider the DLF approach to the dynamics of advection-diffusion

because it was shown in [5] that for hyperbolic dynamics, the DLF returned significantly

better estimates on noisy hyperbolic problems, particularly when the observations were sparse

yet had low uncertainty –which is the more common practical situation. We will, in fact,

show that for the advection-dominated case, the DLF approach yields better estimates than

other filtering approaches.

Since we are specializing to the linear advection-diffusion initial value problem with known

Gaussian noise processes it is possible to fully determine the posterior distribution with the

determination of the posterior mean and variance. We connote a sample time series from the

distribution of u(x, t) as the truth. We will make use of the truth for testing the performance

of the DLF. In practice, the truth is not available to us. Instead, we are given an approximate

solution of the stochastic advection-diffusion initial value problem, with known errors, often

in the form of a computer code. The estimation problem will thus be one of finding moments

of the posterior model state variable, given observations.

4.4.1 Dynamics, Model, Observations

The space interval over which the dynamical system is defined will be [0, L] ⊂ R, with periodic

boundaries. Space will be discretized by a grid X of equidistant nodes X =
{
xk = k ·∆x

}K

k=0
,

with xK = L − ∆x due to the periodic boundary conditions. The time interval shall be

[0, tN ] ⊂ R discretized in equal time steps T := {tn = n∆t}N
n=0. We will denote the set T as

estimation times. On [0, L]× [0, tN ] we consider the random field u(x, t), which obeys the

stochastic initial value problem

ut − C(x, t)ux = Duxx + F (x, t), t > 0, x ∈ [0, L],

u(x, 0) = u0(x), x ∈ [0, L]. (4.1)

The subscripts x and t connote partial differentiation with respect to these variables. The

periodic initial condition is u0(x) is known or is drawn from an assumed known probability

distribution U . The parameter D is the diffusion constant, F (x, t) and C(x, t) are forcing
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and wave speed terms, respectively. It will be assumed that

C(x, t) = c(x, t) + ϕ(x, t), (4.2)

F (x, t) = f(x, t) + χ(x, t), (4.3)

where f(x, t) and c(x, t) are the forcing and phase speed, respectively, which are assumed

known, deterministic and periodic on [0, L]. The random fields ϕ and χ have the form

ϕ(x, t)dt = AdW c(x, t), χ(x, t)dt = BdW u(x, t) with A and B known constants, dW c and

dW u incremental zero-mean Wiener processes, assumed uncorrelated. We define a semi-

continuous ensemble member solution to (4.1) on the space grid as U(t) :=
(
Uk(t)

)K

k=0
=

(u(X, t))K
k=0.

Going forward, bold variables will denote vectors or matrices. Superindices are space,

subindices are time. For all variables with a single index, e.g. ai, we denote by ak:n = {ai}n
i=k

the union over all indices between k and n.

We connote v as the model approximation to (4.1). We will build a specific one here as

follows: on the grid X × T , the values of v are obtained by a forward numerical solution of

the SDE (4.1). At each time tn, we denote the collection of values of the model v(·, tn) on X

by

Vn = v(X, tn) (4.4)

The vector Vn is evolved forward with the SDE solver

Vn+1 = LnVn +
√

∆t ∆wn + ∆t fn (4.5)

where Ln ∈ RK×K is a numerical operator approximating the linear terms in (4.1), fn :=(
f(xk, tn)

)K

k=0
and ∆wn ∈ RN is mean-zero Gaussian vector with covariance matrix Qn

accounting for the stochasticity of (4.1) and the model error. The distribution of V0 and

⟨wnwn
⊤⟩ are assumed known. For x-values that are off-grid, we use linear interpolation in

space to extend the outputs of the numerical SDE solver (4.5) to [0, L] × T . Namely, for

x /∈ X, we define

v(x, tn) = H(x)Vn, n = 1, . . . , N (4.6)
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where H is a linear interpolation operator to be specified later. The model, up to time tnm ,

is used to inform the prior π(V0:nm).

In practice, observations are obtained from instruments and the error is instrument-related.

Here we generate them synthetically from the truth. We assume that observations are

available at observation times {tn1 , . . . , tnM
} =: TO ⊂ T . The set of available observations is

O := {(ym,Ym)}M
m=1 which provide, up to noise, temporally and spatially localized records

on the value of u. Specifically, the observation pair (ym,Ym) corresponds to a time tnm in

the set of observation times TO ⊂ T . The vector ym ∈ [0, L]I contains the I ∈ N locations

where the observations were recorded, and Ym ∈ RI is a measurement of the value of u at

those locations at time tnm . Specifically,

Y i
m = u(yi

m, tnm) + ϵi
m, i = 1, . . . , I (4.7)

where the measurement error ϵm is a mean-zero, normal vector in RI with known covariance.

Note that observation times TO ⊂ T do not include all times in T and that the number of

observations I does not depend on t.

By Bayes Law

π(V0:nm|Y1:m) ∝ π(Y1:m|V0:nm)π(V0:nm). (4.8)

The likelihood at time tnm ∈ TO, informed by observations is π(Y1:m|V0:nm). The prior

π(V0:nm) is informed by the model.

4.4.2 The Kalman Filter (KF)

In principle, the DLF approach applies to most sequential filtering schemes. Since the problem

we are considering is linear, we will be testing the DLF approach to filtering as applied to

the Kalman filter (KF). In what follows it will be understood that a comparison between the

DLF approach and the Kalman filter is to be understood as the DLF approach applied to

the Kalman filter and the classical Kalman filter.
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Referring to (4.8) the posterior at any time tnm ∈ TO can be split up as follows

π(V0:nm |Y1:m) ∝ π(Ym|Vnm)π(V0:nm |Y1:m−1) (4.9)

π(V0:nm|Y1:m−1) = π(Vnm|Vnm−1)π(V0:nm−1|Y1:m−1). (4.10)

Let Vn|n, denote the posterior of Vn conditioned on observations up to tn. If tn = tnm ∈ TO

for some m, then this distribution is simply π(Vnm |Y1:m), which by (4.9) can be written as

Vnm|nm ∼
∫
π(V0:nm |Y1:m)dVnm−1 · · · dV0

∝ π(Ym|Vnm)
∫
π(V0:nm−1|Y1:m−1)dVnm−1 · · · dV0

= π(Ym|Vnm)π(Vnm |Vnm−1|nm−1). (4.11)

This prior π(Vnm|Vnm−1|nm−1) can be calculated by applying the forward SDE solver (4.5)

to Vn−1|n−1, while the Likelihood π(Ym|Vnm) is determined entirely through the measurement

errors. If, on the other hand, tn /∈ TO, we simply have Vn|n ∼ π(Vn|Vn−1|n−1), which can be

calculated through the model. Thus the posterior of V0:N can be calculated sequentially for

one Vn at a time, based on the posteriors up to the respective previous time step. All priors

and likelihoods here, and therefore the posteriors too, are normally distributed.

We denote by ⟨Vn|n⟩ and Pn|n the mean and covariance of Vn|n and by ⟨Vn|n−1⟩ and Pn|n−1

the mean and covariance of Vn|n−1 ∼ π(Vn|Vn−1|n−1). Further, let Rm = ⟨ϵmϵ⊤
m⟩.

The KF produces sequential estimates for ⟨Vn|n⟩ and Pn|n, and thus for the posterior

distribution, in two steps. In the forecast step the model is used to produce an initial estimate

of π(Vn|Vn−1|n−1). Since the model is linear and the noise is (unbiased) normal, the prior at

tn is estimated through the model and the posterior at the previous time step:

⟨Vn|n−1⟩ = Ln−1⟨Vn−1|n−1⟩+ ∆tfn−1, n = 1, . . . , N, (4.12)

Pn|n−1 = Ln−1Pn−1|n−1L
⊤
n−1 + Qn−1, n = 1, . . . , N, (4.13)

with Qn−1 = ⟨wn−1w
⊤
n−1⟩. Initial data is assumed to be known or a sample of a known

distribution. If no observations are available at time tn, the posterior is not affected by the

105



likelihood, and thus ⟨Vn|n⟩ = ⟨Vn|n−1⟩, and Pn|n = Pn|n−1. If, on the other hand, observations

are available, i.e. n = nm with tn = tnm ∈ TO, an analysis step is performed, which takes in

the mean and covariance of the prior ⟨Vn|n−1⟩ and Pn|n−1 and the mean and covariance of

the likelihood ⟨Yn⟩ and Rn and calculates the moments of the posterior. For any step tnm

with observations, thus, the analysis step consists of the update

⟨Vnm|nm⟩ = ⟨Vnm|nm−1⟩+ Knm

(
⟨Ym⟩ −H(ym)⟨Vnm|nm−1⟩

)
, (4.14)

Pnm|nm = (I −KnmH(ym))Pnm|nm−1. (4.15)

Here H(·) evaluated at the vector v ∈ ΩI is the interpolation matrix defined as H(v) :=

(H(vi))I
i=1 ∈ RI×K . The term

(
⟨Ym⟩ −H(ym)⟨Vnm|nm−1⟩

)
in (4.14) is called the innovation.

In (4.15) I is the N -dimensional identity matrix; Knm is called the Kalman gain and is

defined as

Knm =Pnm|nm−1H(ym)⊤

·
[
H(ym)Pnm|nm−1H(ym)⊤ + Rm

]−1
. (4.16)

4.5 The Dynamic Likelihood Approach

In hyperbolic dynamics, (waves) information (along with uncertainties) will flow along

characteristics. The DLF approach exploits the wave dynamics to propose a richer likelihood

than other traditional problems. An observation (ym,Ym) measured at time tnm ∈ TO is used

to generate pseudo-observations (Hnym,HnYm), at times tn ∈ T with tn > tnm . These are

used to generate likelihood distributions in between observations. In fact, it is possible to

produce likelihoods in the future, so that in principle, it is possible to do Bayesian estimation

in the future. We refer to a likelihood, constructed from observations as well as from pseudo-

observations, as the dynamic likelihood. The pseudo-observations are tightly coupled to the

inherent model dynamics; in [5] we show how these are constructed for hyperbolic problems.

Here we show how these could be formulated for advection-diffusion dynamics.
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4.5.1 Pseudo-Observations

The pseudo-observation at time tn, from the observation ym at time tnm , have locations

Hnym = xm(tn) ∈ [0, L]I which solve

dxi
m(t) = −c(xi

m(t), t)dt, tnm < t ≤ tN ,

xi
m(tnm) = yi

m i = 1, . . . , I (4.17)

A schematic of how Hnym arises from ym is depicted in Figure 4.1. The value HnYm of the

pseudo-observations approximate u at the location of the characteristics, and they include a

measurement error. Namely, HnYm = (v(xi
m(tn), tn) + ζ i(tn))I

i=1, where ζi(tm) has the same

distribution as ϵi
m.

Ideally, HnYm would be the values at t = tn of solutions ui(t) := u(xi
m(t), t) for tnm <

t ≤ tN of the following system of equations derived from (4.1) and (4.17),

dui(t) =
(

(D + 1
2A

2)ui
xx(t) + f(xi

m(t), t)
)
dt

+BdW u + Aui
x(t)dW c

ui(tnm) =Y i
m. (4.18)

A schematic of how a single pseudo-observation HnY i
m would behave along a characteristic is

depicted in Figure 4.2.

As the truth u is assumed unknown, we recast equation (4.18) with an approximate

form where the terms ui
x and ui

xx are replaced by approximations v(x)(x, t) ≈ ux(x, t) and

v(xx)(x, t) ≈ uxx(x, t) which we refer to as first and second derivatives of the model. (We could

obtain v(x)(x, tn) and v(xx)(x, tn) from the interpolated model v, this is not a requirement

and they could just as well be given from another model or data). With these replacements

(4.18) becomes

dũi(t) =
((

D + A2

2

)
v(xx)(xi

m(t), t) + f

)
dt

+ Av(x)((xi
m(t), t))dW c +BdW u
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Figure 4.1: Schematic depiction of how locations of pseudo-observations Hnym(orange)
are derived from the locations of observations ym(green) by propagating along
characteristics(black). In this graphic at tn1 , only observations are available, thus only
a classical filtering step can be performed, at tn only pseudo-observations are available, thus
a regular DLF step can be performed, and at tnM

observations and pseudo-observations are
available, which means an MDLF step would be performed. (See section 4.5.1 for the definition
of DLF/MDLF-step and calculations of Hnym as well as HnYm.) (In text mentions: p.107)
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Figure 4.2: Schematic depiction of how values of pseudo-observations HnYm are derived
by evolving observations Ym along characteristics. At tnm , we see a single observation
Y i

m at location yi
m(green dots). At tn the pseudo-observation HnY

i
m at location Hny

i
m is

depicted(orange dots.) As a dashed green line, we see a curve of constant amplitude Y i
m along

the characteristic starting at yi
m. From Y i

m to HnY
i

m in black the actual trajectory of the
pseudo-observation is shown. Underlayed in red are times, when the pseudo-observation is
smaller than Y i

m, and underlayed in blue are times, at which the pseudo-observation exceeds
the value of Y i

m. (In text mentions: p.107)
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ũi(tnm) =Y i
m, (4.19)

Provided v(x) and v(xx) along the characteristic xm(t), equation (4.19) is a well-posed

approximation of (4.17). We thus finally define the pseudo-observations

Hnym :=
(
xi

m(tn)
)I

i=1
(4.20)

and

HnYm :=
(
ũi(tn)

)I

i=1
, (4.21)

where the xi
m(t) and ũi(t) solve equations (4.17) and (4.19) respectively for i = 1, . . . , I.

At estimation times tn ∈ T , the pseudo-observations (Hnym,HnYm) are treated like real

observations, and the pseudo-observation error ζn ∈ RI is defined as

ζn = HnYm − v(Hnym, tn). (4.22)

ζn is assumed to be distributed according to a mean zero Gaussian distribution. Recall that

the value of v(Hnym, tn) can be obtained from Vn using (4.6). Equation (4.22) thus induces

the distribution π(HnYm|Vn), which will be used to inform the Likelihood at times tn used

in the DLF and discussed in section 4.5.2. For later reference, we define Hnyℓ:m and HnYℓ:m

for nℓ < nm < n as, respectively, the column vectors obtained by concatenating all Hnynm′

and HnYnm′ with tnm′ ∈ TO and tnℓ
≤ tnm′ ≤ tnm . Namely,

Hnyℓ:m =


Hnyℓ

...

Hnym

 , HnYℓ:m =


HnYℓ

...

HnYm


Thus (Hnyℓ:m,HnYℓ:m) contains all pseudo-observations at time tn derived from observations

that were measured at times between tnℓ
and tnm .
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4.5.2 Formulation of the Filter

We define for the duration of this section n ∈ {1, . . . , N} and m ∈ {1, . . . ,M} such that

nm ≤ n ≤ nm+1. Under the assumption posed on the model, observations and pseudo-

observations, the DLF yields an alternative form of the posterior of the model, up to time tn,

conditioned on observations measured up to time tnm :

π(V0:n|Y1:m) ∝ π(Ym,HnY1:m−1|Vn)π(V0:n|Y1:m−1). (4.23)

Let Vn|n denote the posterior of Vn conditioned on observations up to time tn. It is distributed

as

Vn|n ∼ π(Vn|Ym,HnY1:m−1)

=
∫
π(V0:nm|Y1:m)dVnm−1 · · · dV0

∝ π(Ym,HnY1:m−1|Vnm) ·
∫
π(V0:nm−1|Y1:m−1)dVnm−1 · · · dV0

= π(Ym,HnY1:m−1|Vn)π(Vn|Vn−1|n−1). (4.24)

We therefore see that this posterior at time tn is entirely determined by the likelihood

of observations and pseudo-observations at tn conditioned on the model up to this point

π(Ym,HnY1:m−1|Vn), and the distribution of the model conditioned on the posterior at the

previous time step π(Vn|Vn−1|n−1). The latter is used as a prior at tn.

This shows that, as in the KF approach and given the observations and pseudo-observations,

the distribution of Vn|n can be found sequentially based on the posterior distribution at

the previous time step Vn−1|n−1. For tn ≤ min(TO) there are no pseudo-observations, i.e.

HnY1:n−1 = ( ) is an empty vector, thus the KF approach is recovered.

If on the other hand tn > min(TO) there are two cases to be considered:

(i) there are no observations at tn /∈ TO and thus π(Ym,HnY1:m−1|Vn) = π(HnY1:m−1|Vn),

(ii) tn = tnm ∈ TO and therefore

π(Ym,HnmY1:m−1|Vnm) = π(HnmY1:m−1|Vnm)π(Ym|Vnm).
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We call a step of the DLF algorithm in the first case a DLF update and in the second case a

multi analysis DLF (MDLF) update. In the first case one proceeds as follows:

The DLF update:

Predict:⟨Vn|n−1⟩ = Ln−1⟨Vn−1|n−1⟩+ ∆tfn−1

Pn|n−1 = Ln−1Pn−1|n−1L
⊤
n−1 + Qn−1

(yH,YH) = (Hny1:m,HnY1:m)

RH = Cov(YH,YH)

Analysis:⟨Vn|n⟩ = Vn|n−1 + Kn

(
⟨YH⟩ −H(y)⟨Vn|n−1⟩

)
Pn|n = (I −KnH(yH))Pn|n−1

where

Kn = Pn|n−1H(yH)⊤
(
H(yH)Pn|n−1H(yH)⊤ + R

)−1
This covers the case, where only

pseudo-observations are available at time tn. Derivations of this mirror the derivation

of the KF exactly, if observations are replaced by pseudo-observations. If both real and

pseudo-observations are available at tn = tnm , i.e. n = nm, a multi-analysis step is performed.

The prediction step is identical as in the previous case. The Analysis step however changes

as follows:

The MDLF update:

Predict:⟨Vnm|nm−1⟩ = Lnm−1⟨Vnm−1|nm−1⟩+ ∆tfnm−1

Pnm|mm−1 = Lnm−1Pnm−1|nm−1L
⊤
nm−1 + Qnm−1

(yH,YH) = (Hnmy1:m−1,HnmY1:m−1)

RH = Cov(YH,YH)

Update:⟨Vnm|nm⟩ = ⟨Vnm|nm−1⟩+ K∗
nm

(⟨Ym⟩ −H(ym)⟨Vn|n−1⟩)

+ Jnm

(
⟨YH⟩ −H(yH)⟨Vn|n−1⟩

)
Pnm|nm = (I −K∗

nm
H(ym)
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− JnmH(yH))Pnm|nm−1

where

K∗
nm

= (I − (I −KH(ym))DH(yH))K

Jnm = (I −KnmH(ym))D

with

K =Pnm|nm−1H(yH)⊤ · (Rnm + H(ym)Pnm|nm−1H(ym)⊤)−1

D =Pnm|nm−1H(yH)⊤
(
RH + H(yH)Pnm|nm−1H(yH)⊤

−H(yH)KnmH(ym)Pnm|nm−1H(yH)⊤
)−1

.

The derivation of these gains can be found in either [13] or [5]. Note that the size of the

matrices to invert in the calculation of these gains is determined by the size of RH ∈ RmI×mI .

In practice, it might be reasonable to limit the size of this matrix by not using all pseudo-

observations indefinitely, but rather discarding some in a trade-off between accuracy and

complexity. As an example, replacing Hny1:m and HnY1:m by Hnykn:m and HnYkn:m

respectively in the previous algorithms, for some kn, would discard pseudo-observations

derived from the oldest observations as time goes on, thus limiting the size of RH to

(m− kn)I(m− kn)I. The overall complexity of the DLF and the effects of discarding "older"

pseudo-observations like this are discussed in the next section.

4.6 Analysis of Computational Complexity of the DLF

The DLF approach has an added computational overhead, as compared to its standard

counterpart. In what follows we estimate the overhead of the DLF approach to Kalman

filtering, as compared to the native Kalman filter. As will be shown subsequently,

improvements in the estimates obtained using DLF may offset the added computational
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burden. The additional computational cost of the DLF, compared to the model on its own,

stems from two sources:

1. Calculating the pseudo-observations (Hny1:m−1,HnY1:m−1).

2. Calculating and applying the gains Kn,K
∗
n,Jn.

If an explicit ODE solver is used to solve equations (4.17) and (4.19) to calculate

(Hnym,HnYm) at tnm ∈ TO the complexity is linear in the number of time steps tn−tnm

∆t
. Since

Hnym ∈ RI and HnYm is normally distributed in RI these calculations over a single time

step are dominated by the calculation of the covariance Rn,m = Cov(HnYm,HnYm) ∈ RI×I

leading to an overall complexity of order O
(

tn−tnm

∆t
I2
)

to calculate (Hnym,HnYm) for a single

tnm ∈ TO. Considering this has to be done for all pseudo-observations (HNy1:M−1,HNY1:M−1)

this leads to a complexity of O
(∑M

m=1
tN −tnm

∆t
I2
)
≤ O (MNI2).

The complexity of calculating the gains at time tn ∈ T is dominated by inverting matrices

of the same size as the covariance matrix RH. At time tn let this size be sn × sn. Note that

for times tnm ≤ tn < tnm+1 this size is sn = mI. The computational cost of matrix inversion is

cubic in the number of rows and therefore the complexity for the n−th time step is O(I3M3).

Over all time steps this is bounded by O(NM3I3). The complexity of the KF arises from

inverting matrices of size I × I at each of the M observation times, thus having an overall

complexity of O(MI3). The DLF’s overall complexity is O(MI3 +MNI2).

Note however, that in all these complexity estimates so far we assumed that all pseudo-

observations (Hnym,HnYm) are used for all tn > tnm . As tn − tnm increases so does the

uncertainty associated with (Hnym,HnYm). Therefore discarding this pseudo-observation

eventually would have only a small effect on overall accuracy. Thus if run time is of the

essence, discarding some pseudo-observations after they outlived their usefulness can help to

keep complexity in check. One way to proceed with this program is to set an upper bound for

the number of pseudo-observations assimilated at any given time, or by setting a threshold

on uncertainty, discarding the relatively most uncertain observations/pseudo-observations.

As an example, let us assume the number of pseudo-observations is capped at an integer

multiple of I, say pI, and the oldest pseudo-observations are discarded every time this

threshold is reached. This means at any given time tn only observations from the last p
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observation times are used to calculate pseudo-observations. At an observation tn = tnm , a

multi-analysis step is performed, before the oldest pseudo-observations (Hnmym−p,HnmYm−p)

from time tnm−p are discarded. In other words (Hny1:m−1,HnY1:m−1) in the DLF algorithm

is replaced by (Hnym−p:m−1,HnYm−p:m−1). This limits the number of pseudo-observations

concurrently in the algorithm to pI from the previous maximum of MI. We get new

complexity estimates under these circumstances by making the replacement M → p in the

previous estimates. Thus the complexity of the DLF falls to O(Np3I3 + pNI2). Assuming

p is picked reasonably small (p ≪ N and p ≪ I) this reduces further to O(NI3), which is

comparable to a standard KF’s complexity of be O(MI3). (While the calculation of the gains

can be a bottleneck of the algorithm, it is noteworthy that as long as neither c nor f in

equations (4.2) and (4.3) depend on the observations Y1:M , the gains are also independent of

Y1:M and can thus be calculated offline).

4.7 Numerical Results and Comparisons

We contrast the DLF approach, as applied to the KF (the DLF), with estimates obtained by

the native KF (the KF). We will also discuss the numerical details of our implementation

and introduce the metrics, based on which we will evaluate the performance of the two

approaches.

4.7.1 Computational Details

Since the DLF approach was developed specifically for hyperbolic (wave) equations, we

are especially interested in determining to what extent it can handle advection as well as

macroscale diffusion. We thus introduce the non-dimensional quantity α := D/c0L, where D

is the diffusion coefficient, c0 is the typical size of the velocity C, and L is the characteristic

length which is taken as the length of the domain, to capture the extent to which diffusion

processes and advection qualitatively affect the solution. Let the primed nondimensional

quantities be

x′ = x

L
, t′ = tc0

L
, u′ = u

u0
, F ′ = FL

u0c0
, C ′ = C

c0
,
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then Eq. (4.1) is now recast as

ut − (c+ χ)ux = αuxx + f + ϕ, t > 0, x ∈ [0, 1],

u(x, 0) = U(x), x ∈ [0, 1], (4.25)

in dimensionless units, having dropped the primes. It is still assumed that ϕ and χ are noise

terms generated by Wiener processes. Therefore χdt = AdW c and ϕdt = BdW u still hold.

We run all numerical examples shown in this section on a domain [0, 1] with periodic

boundary conditions and times spanning t0 = 0 to tN = 0.5. We chose ∆x = 0.01 and

∆t = 0.005, in dimensionless units for the discretization. The wave velocity is set to be

C(x, t)dt = cos (5πt) dt+ AdW c(x, t) + ÃdW̃c(t)

Note that we split the wave noise term into AdW c(x, t) + ÃdW̃c(t). Both dW c and dW̃c are

incremental Wiener processes, but dW c will be assumed to be uncorrelated in space, i.e.,

⟨dW c(x)dW c(y)⟩ = δx,y for all x, y ∈ X, while dW̃c is independent of x. We will set A = 0.05

for all numerical experiments but will consider two cases of Ã when simulating the truth. In

the first case Ã = 0, while in the second Ã = 1. The model will be unaware of Ã, i.e. assume

Ã = 0 in both cases. This introduces a systematic error in C for the model that the KF and

DLF will have to overcome. The effects of this will be discussed in section 4.7.2.

In all of the following examples, we assume that the forcing is given by

F (x, t)dt = BdW u(x, t) = 0.05dW u(x, t)

where dW u(x, t) is an incremental Wiener process in time for each x and ⟨dW u(x, t)dW u(y, t)⟩ =

δx,y for all x, y ∈ X.

The initial data will be

u0(x) = σ exp(−250(x− θ)2).
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The amplitude σ and phase θ will be deterministic or chosen from random distributions. We

will discuss three kinds of initial data for the model: (i) the deterministic case where σ = 1

and θ = 1
2 (see Section 4.7.2); (ii) with uncertain amplitude: σ ∼ U

[
1
2 ,

3
2

]
, where U indicates

a uniform distribution, and θ = 1
2 ; and (iii) the case of σ = 1 and uncertain phase θ ∼ U [0, 1].

In all these cases the amplitude and phase of the truth are fixed to σ = 1 and θ = 1
2 . Cases

(ii) and (iii) will be highlighted in Section 4.7.2.

The truth will be used to test the outcomes as well as to generate observations. The

truth is computed through Strang-splitting [19]. Equation (4.1) is split into a noisy advection

equation

ut − (c+ χ)ux = f + ϕ

and a deterministic diffusion equation

ut = αuxx,

which are then used to generate a solution sequentially. The diffusive step is solved via FFT

by calculating an exact solution in Fourier space. For the advective part of the splitting, we

chose a Lax-Wendroff scheme in space and a stochastic Runge-Kutta scheme in time. The

chosen RK method is a third-order scheme with second-order weak convergence [16].

The model is given to us as a first-order split step procedure, splitting (4.1) into the same

noisy advection equation and diffusion equation as for the truth. The diffusion step is, again,

solved exactly via FFT. The advective step of the model is solved with an upwind scheme in

space and an explicit Euler scheme in time. The Courant number for all methods is 1.

Observations are derived from the truth. These are made available at observation times

tnm ∈ {0.05, 0.1, 0.15, ..., 0.45} = TO by uniformly drawing their locations y1
m, . . . , y

I
m ∈ X

from the grid, without repetition. Their corresponding values are then determined from

the truth via Y i
m = u(yi

m, tnm) + ϵi
m, where the ϵi

m are drawn independently from a mean

zero normal distribution with variance 10−4. Throughout the next sections, the number of

observations at each observation time will take values I ∈ {10, 20, 40, 60}.

116



Both the KF and the DLF require the interpolation operator H(x). In these tests, we

use a simple linear interpolation operator, which for x ∈ [0, L] is defined as

H(x) := ((1− r(x)δk,ℓ) + r(x)δk,ℓ+1)K
k=0 ∈ R1×K . (4.26)

Here, r(x) = mod (x,∆x) is the remainder of x
∆x

, δi,j is the Kronecker delta, and ℓ ∈

{1, . . . , K} is chosen such that xℓ ≤ x < xℓ+1 for grid points xℓ, xℓ+1 ∈ X. (To account for

periodic boundary conditions, assume xK < x0 = L for xK ≤ x < L).

To calculate Hnym, we use an explicit Euler algorithm to solve equation (4.17). Since for

HnYm, the calculation of the mean and covariance is sufficient for the algorithm we use an

explicit Euler algorithm based on equation (4.19) for each of those as well. The derivatives

of the model are therefore only required at tn ∈ T . We obtain them through the model

as v(x)(x, tn) = H(x)∇xVn and v(xx)(x, tn) = H(x)∇xxVn, where ∇x and ∇xx are center

difference operators approximating first and second derivatives. Thus over a single time step

from tn−1 ≥ tm to tn and with H̃n := H(Hnym) and Rn,m = Cov(HnYm,HnYm) we use

⟨HnYm⟩ = ⟨Hn−1Ym⟩+ ∆t ·
(
D + A2

2

)
H̃n−1∇xx⟨Vn−1|n−1⟩,

and

Rn,m = Rn−1,m + ∆t ·
(
B2I + A2(∇xH̃n−1⟨Vn−1|n−1⟩)(∇1H̃n−1Vn−1|n−1)⊤

)
+ ∆t2 ·

(
D + A2

2

)
H̃n−1∇xxPn−1|n−1∇⊤

xxH̃⊤
n−1. (4.27)

The second line in (4.17) is an explicit Euler scheme modeling the system noise, while the

third line tracks the errors introduced due to the uncertainty of Vn.

To quantitatively compare the traditional KF to the DLF approach to the KF we calculate

the following metrics: the Residual Mean Square (RMS) error, the Mass error, the Center of

Mass (CoM) error, and the probabilistic Calibration. These are given by

RMS error:

√√√√∆t∆x
N∑

n=1

K∑
k=1
|U i(tn)− ⟨V k

n|n⟩)|2
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Mass error:

√√√√√∆t∆x2
N∑

n=1

∣∣∣∣∣
N∑

i=1
|U i(tn)| −

N∑
i=1
|⟨V k

n|n⟩|
∣∣∣∣∣
2

CoM error:

√√√√√∆t
N∑

n=1

∣∣∣∣∣∣
∑K

k=1 |Uk(tn)xk|∑K
k=1 |Uk(tn)|

−
∑K

k=1 |⟨V k
n|n⟩xk|∑K

k=1 |⟨V k
n|n⟩|

∣∣∣∣∣∣
2

Calibration: ∆t
tNN

N∑
n=1

K∑
k=1

1
(
(Uk(tn) −⟨V k

n|n⟩) < 2
√

Var(V k
n|n)

)
,

where 1(·) is the indicator function.

The RMS error tracks the sum of local errors between model and truth, while the Mass

error determines how accurately the total mass in the system is captured. The CoM error

remains small if the position of the center of mass is captured well by the model. This is

important in advection-dominated problems and in our examples will be mostly determined

by how well the position of the maximum is captured over time. The Calibration measures

the percentage of times the truth is within two of the estimated standard deviations of the

model. If both noise and model error are normally distributed and captured correctly by the

uncertainty, this value should be approximately 95%. Higher values indicate the variance is

overestimated, while smaller values mean the uncertainty is larger than estimated. In the

following sections, we will see these measures evaluated in total and at specific times. When

evaluated at a specific time tn, the ∆t and the sum over n will be dropped and what remains

will be evaluated at the corresponding n. To account for the randomness in the generation

of the truth,(and the initial data of the model, where applicable,) all records of these four

metrics from hereon will be based on 50 runs each: Line plots of RMS, Mass, Com error and

Calibration will show their mean value over 50 runs, while all box plots will be based on their

respective minimum, maximum and the 25%, 50% and 75% quantiles. Between each of these

runs the truth, observations, and initial data will be regenerated. For comparability, the KF

and DLF will use the same Observations and initial data for each individual run.
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4.7.2 Comparing the KF, and the DLF Outcomes

We will compare outcomes for deterministic and aleatoric initial data, uncertainties in the

phase speed and as a function of α.

Comparing the KF and DLF in Systems with Deterministic Initial Data

We will compare posterior predictions Vn|n. The comparison is conducted in a setting where

both the noise of the phase speed dW c and the noise of the forcing dW u are uncorrelated in

space, i.e., ⟨dW (x)dW (y)⟩ = δx,y. Both methods are provided with deterministic initial data,

σ = 1, and θ = 1
2 and Ã = 0 . Throughout this comparison, both the relative diffusion α and

the number of data points per observation I will be varied. We will demonstrate that the

DLF outperforms the KF in terms of RMS, Mass error, and Calibration, particularly when

the number of data points is sparse and when α is small. The amplitude of the wave noise

will be fixed at A = 0.05 for the entirety of this section.

We first examine an individual run in the advection-dominated case. For α = 0.01, Figure

4.3 shows the truth (right), the model prediction through the KF (left), and the prediction

of the DLF (middle). Both filters were presented with I = 20 data points per observation

time. The location of these data points is randomly selected at each observation time but is

identical between the KF and the DLF. Note that the trajectories of pseudo-observations

depicted extend beyond the availability of observation, providing Bayesian predictions at

times t > 0.45, which can be considered the future.

At the observation sites, both the KF and the DLF pick up the values of the observed data

and adjust their predictions during the analysis step. The DLF manages to maintain these

adjusted values over the simulation time, while in the KF, adjustments due to observations

quickly vanish due to diffusion. This is not surprising, as the DLF reinforces the information

gathered from observations through pseudo-observations that move along characteristics.

Figure 4.4 confirms that the DLF captures the truth more accurately, as quantified by

the metrics. We examine the time series of these four metrics for the same parameters and

conditions used to generate the previous example. Starting from time t = 0.05, the first

observation time, there is a clear divide between the KF and the DLF in the RMS and
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Mass errors, with the DLF performing significantly better. The same can be said for the

Calibration, though the advantage of the DLF is less pronounced. There appears to be no

such clear trend for the CoM error.

As the last part of this set of experiments, we examine if these trends hold up when the

remaining parameters α and I are varied. Figure 4.5 depicts boxplots of the time-averages

of the four metrics across a range of numbers of observations I and diffusion constants α.

All combinations of I ∈ {10, 20, 40, 60} and α ∈ {0.001, 0.01, 0.1} were analyzed. These

numerical examples confirm our expectations: for advection-dominated dynamics and sparse

but low-uncertainty observations, the DLF does significantly better in terms of Mass errors.

In terms of the RMS, CoM, and Calibration, we see that the DLF outperforms the KF

when data is sparse, namely I = 10, 20. The KF gains an advantage when observations are

plentiful.

Comparison of the KF and DLF Estimates When Uncertainties in the Initial

Conditions Are Present

Since the DLF constantly imparts phase information via the likelihood of the pseudo-

observations conditioned on the model, the DLF approach should deliver better predictions

than the KF on problems where there are uncertainties in the initial data. Again, this is

expected when the data has low uncertainty and the dynamics are advection dominated.

We will compare the quality metrics of the two methods with initial condition uncertainty.

We will show that the DLF manages to overcome this restriction within a few time steps,

practically reaching error values comparable to the case of known initial data.

To simulate this uncertainty in the initial data, the truth will be generated with the same

initial data as in the previous section, namely σ = 1 and θ = 0.5, while both the KF and

the DLF will be provided different initial data. We will examine two different cases in this

section. First, the amplitude σ provided to the filters will be drawn uniformly from U [1
2 ,

3
2 ],

unless individual runs are discussed, for which σ ≠ 1 is picked by hand. Throughout this first

set of examples, the phase θ = 1
2 is assumed known. In the next set of examples, the phase θ

will be uniformly drawn from U [0, 1], while assuming σ = 1 is known. There will again be an
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exception when discussing individual runs, for which θ ̸= 0.5 is picked by hand. The initial

data provided to the KF and DLF will be identical for each run to guarantee comparability.

We test the same values for the relative diffusion α = 0.01 and the number of data

points per observation I = 20 as in the previous section. Noise levels remain the same as in

the previous section. We will demonstrate that the DLF is significantly more successful in

correcting its incomplete knowledge of the initial data than the KF. All trends observed in

the previous section, that is, smaller errors and better calibration for the DLF, persist under

these settings.

In Figure 4.6, we see the results of an individual run where σ was set to 0.7 for the model

and θ = 1
2 . The number of observations available is I = 20, and α = 0.01.

We see that the DLF manages to correct its incorrect initial amplitude almost immediately

as soon as it has access to observations, while the KF struggles to correct its estimation of

the amplitude throughout the run.

The time series of the four metrics are shown in Figure 4.7. These still used I = 20 nor

α = 0.01 was changed from the previous run. We observe qualitatively similar results as

before. The DLF performs better in terms of RMS and Mass error, as well as in Calibration.

There is no significant difference in the CoM error.

The advantage of the DLF over the KF in terms of RMS and Mass error is significant.

After a brief adjustment period, the DLF reaches the same levels as in the case with known

initial data. The advantage in Calibration is less pronounced and comparable to the previous

case.

Figure 4.8 shows boxplots of the total value of each of the four metrics across parameters

α ∈ {0.001, 0.01, 0.1} and I ∈ {10, 20, 40, 60}. We observe the DLF performing better on

RMS and Mass error, as well as Calibration, with the advantage expectedly dwindling as the

number of observations increases and the diffusion ramps up. In the case of the Mass error,

the DLF is still superior across all I and α.

Next, we will focus on phase error effects on the estimation. In the remainder of this

section, we repeat the previous experiments, but now fix σ = 1, while θ ∼ U [0, 1], unless

focusing on just a single run.
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Figure 4.9 depicts results from such an individual run with θ = 0.25. The diffusion was,

again, set to α = 0.01 and I = 20. Both filters start with the mode in the wrong position

and pick up on their location error as observations become available. The initially displaced

mode decreases in amplitude for both models, while a second mode in the correct location

starts emerging as soon as observations are available.

The DLF manages to suppress the wrong mode over just a few time steps, roughly the

same amount of time it takes to pick up the correct position and amplitude of the actual

mode. The KF does significantly worse in this setting, taking almost the entire simulation

time to drop the phase error.

In Figure 4.10, we analyze the average time series of four quality metrics again. The

diffusion α = 0.01 and number of observations I = 20 remain the same. The DLF still

performs better than the KF in terms of RMS error and Calibration, with a much bigger

advantage in Calibration than in the previously discussed examples. For the first time, there

is a clear difference in the CoM error, with the DLF taking a significant lead. Note that in

terms of the Mass error, the DLF initially does worse than the KF. This can be explained by

the DLF picking up the phase and amplitude of the correct mode, before phasing out the

incorrect first mode. In fact there is a brief period where it estimates the existence of two

modes. In the long run, the DLF outperforms in terms of Mass error as well.

To close out this section, we test whether the advantage of the DLF over the KF can be

sustained for different values of I and α. Figure 4.11 depicts the statistics of the four metrics

for I ∈ {10, 20, 40, 60} and α ∈ {0.001, 0.01, 0.1}. We observe the following: The DLF does

substantially better on RMS, CoM, and Calibration, confirming all trends seen so far in this

section. Unlike previously observed, the DLF sustains its advantage throughout cases with

higher numbers of observations, likely because more observations make it more probable to

pick up the correct location of the true mode in the analysis stage of the assimilation.

In terms of Mass, the DLF now actually performs worse than in previous cases, and even

slightly worse than the KF, when few observations are available. This can be explained by

the fact that we are looking at time averages of the Mass error here. Since the DLF yields two

mode estimates early on, for a brief period, its Mass error is higher. Additional observations

help depress the second mode.
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Comparing the KF and DLF When Uncertainties in Phase Speed are Present

In the previous section, we compared the DLF to the KF assuming limited knowledge of the

initial data. In this section, we will showcase how both filters perform under the assumption

that phase errors are significant. To this end, during the simulation of the truth, Ã = 1 will

be used, while the model and thus KF and DLF estimators are unaware of this and still

assume Ã = 0. This will cause substantial divergence between the phase speed of the truth

and the phase speed used by the model, resulting in significant displacement of the position

of the center of mass, if no assimilation happens. Initial data is assumed to be known. The

DLF outperforms the KF in terms of RMS and Mass metrics, but it will also be shown that

the DLF can correct the displaced center of mass better than the KF. We first take a look at

an individual run again. Predictions and truth are depicted in Figure 4.12. Diffusion is again

α = 0.01 and I = 20 observations are available at each observation time for this example. As

seen in previous sections the DLF manages to adjust its predictions to the observations much

more rapidly than the KF.

Regarding the time series of the quality metrics depicted in Figure 4.13 we now see

the DLF outperforming the traditional KF in all metrics except the CoM error, where it

occasionally does slightly worse.

Considering the total values of the four metrics over a larger range of α and I we see the

DLF clearly taking the lead. Boxplots of these statistics are depicted in figure 4.14. The DLF

performs better on average regarding all four metrics, this time persisting through higher

diffusion and increased number of observations, as far as examined. This again shows the

superiority of the DLF over the KF in the case of an ill-informed model, this time illustrated

by the models getting the phase speed wrong.

Dynamics and the DLF and KF outcomes

In previous sections, we compared the capabilities of the DLF and the KF under increasingly

complex uncertainties in the model. All these experiments were initially conducted in the

advection-dominated setting α≪ 1. In this next section, we will consider the performance of

the DLF and KF under different dynamic conditions, i.e., when α ≈ 1 or larger. The DLF
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relies on the propagation of observations along characteristics determined by the advective

part of the system. The evolution of these observations along these characteristics occurs in

the presence of diffusion, which is determined by the derivatives of the imperfect model v.

Thus, we expect diminishing returns in the high α regime for the DLF. We will examine this

next. In the following experiments, I = 20, σ = 1, θ = 1
2 , and the noise remains spatially

uncorrelated, i.e., Ã = 0. The resulting average metrics as a function of α on a range of

α ∈ [0.0001, 5] are depicted in Figure 4.15. As noted previously, the DLF has an advantage

over the KF in all four analyzed metrics as long as advection dominates, i.e., α≪ 1. However,

this advantage decreases as α increases. Nonetheless, the DLF remains useful if the data is

sparse.

In the advection-dominated case, the advantages of the DLF were more pronounced in

cases of ill-informed models. Thus, as a last experiment, we will investigate if these advantages

can be maintained as α increases. To this end, we assume uncertainties in the initial data

amplitude and phase, i.e., σ ∼ U [1
2 ,

3
2 ] and θ ∼ U [0, 1]. Further, we reintroduce the systematic

uncertainty in phase speed into the model, i.e., Ã = 1, when simulating the truth. The

number of observations is set to I = 20, while α ∈ [0.0001, 5]. The resulting average metrics

are depicted in Figure 4.16. We see now that the DLF, again, performs better in all four

metrics over the entire range of analyzed α. For RMS and Mass error, as well as Calibration,

the distance between DLF and KF decreases as α increases, while the advantage in terms of

CoM error seems to be nearly unaffected by the values of α.

4.8 Discussion and Conclusions

The DLF approach to data assimilation was developed to handle hyperbolic (wave) dynamics.

In this work, we extend the DLF approach to handle advection-diffusion dynamics. The DLF

approach was first proposed in [13] and made operational in [5] on hyperbolic problems. A

significant challenge in extending DLF to advection-diffusion problems is that the diffusion

term needs to be evaluated along characteristic paths. We used the derivatives of the model

as an estimator for this term. However, there are other alternatives, depending on the physics

underlying the problem.
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In this study, the evolution of observations through time was driven by a combination

of data and the model at hand. Since the grid points used in model calculations and the

characteristics along which observations travel in the Lagrangian frame did not necessarily

coincide, extrapolation of the model to these off-grid points was required.

There are two ways the DLF can be formulated. In both cases, phase information

is conveyed via the dynamic likelihood. In the multi-analysis case, observations or their

projections forward in time, along with their uncertainties, can improve the extent of space in

which observations affect the analysis product. In practice, the decision of which observations

to keep for how long after their original measurement will need to balance computational

complexity against improved accuracy.

The DLF approach requires a code that can solve the characteristics problem. With

this solver, all additional implementation steps are no harder to implement than the classic

KF. Like the KF, the computational complexity of the DLF approach applied to the KF is

cubic in the maximum number of data points used at a time step. It can, however, still be

significantly higher than the KF, since the DLF would be potentially applied more frequently

than if applied at observation times exclusively. Some countermeasures to keep the DLF’s

complexity in check were discussed. Improved estimates make the higher computational cost

justifiable.

Using numerical simulations, we demonstrated that the dynamic likelihood filter (DLF)

outperformed the standard KF estimation concerning several metrics of accuracy. We showed

that the DLF is superior to the KF when advection dominates diffusion, and observations

are sparse and have high precision. Further, we demonstrated that:

• The DLF leads to a more accurate prediction of the truth than the KF, as demonstrated

through its lower RMS in all experiments.

• The DLF estimates are significantly less sensitive to uncertainties in the initial data

than the KF. It manages to predict the correct phase and amplitude within a shorter

time and does so more accurately. As a result of capturing the phase more accurately,

the center of mass of the solution is predicted with more accuracy. Further, the DLF

gives more accurate local estimates (RMS) and predictions of overall mass.
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• The DLF leads to more accurate predictions even when the phase speed is affected by

a great deal of uncertainty.

• The DLF is superior in estimating the variance, particularly when uncertainty beyond

noise is introduced through uncertain initial data or an ill-informed model.

The last three points remain true, even when diffusion and advection are roughly the same

(α ≈ 1).

In summary, the DLF approach to data assimilation on advection-diffusion problems shows

great promise as an estimator, particularly when the observation network is sparse yet of low

noise. The implementation requires special time integrators, but its computational overhead

is well offset by producing better estimates. In [5], we showed that the DLF permits Bayesian

estimates of model and pseudo-observations into the future, possibly beyond the present time

when no observations are available. Using conventional data assimilation, forecasts will use

the model-informed prior in the estimate of future moments. If the pseudo-observations

inform a likelihood that is more compact than the prior, the forecast of the mean of the state

may well be significantly different than the mean predicted via the prior only. This unique

capability of being able to make Bayesian forecasts persists in the DLF approach, as applied

to advection-diffusion problems.
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(a) KF (b) DLF (c) Truth

Figure 4.3: Posterior mean prediction as estimated by (a) the KF, and (b) the DLF, compared
to (c) the truth. Advection dominated case, with α = 0.01, initial data σ = 1 and θ = 0.5 and
spatially uncorrelated wave noise A = 0.05 and Ã = 0. Both filters use I = 20 observations
per observation time. The locations of observations are randomly selected grid points, marked
by black rings. Observation times are TO = {0.05, 0.1, ..., 0.45}. The trajectories of pseudo-
observations are shown as black lines. (In text mentions: p.119)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.4: Time series of (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of the KF
(red), the DLF (blue), averaged over 50 runs. Depicted are results from advection dominated
cases with α = 0.01, known initial data σ = 1 and θ = 0.5 and spatially uncorrelated wave
noise A = 0.05 and Ã = 0. Both filters use I = 20 observations per observation time.
The locations of observations are randomly selected grid points. Observation times are
TO = {0.05, 0.1, ..., 0.45}. (In text mentions: p.119)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.5: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue),
and DLF (red), across 50 runs for spatially independent phase speed noise A = 0.05, Ã = 0,
varying diffusion α =∈ {0, 0.001, 0.01}) and observations at I = 10, 20 and 40 random
locations at every observation time TO = {0.05, 0.1, ..., 0.45}. Initial data is assumed known
with σ = 1 and θ = 1

2 . (In text mentions: p.120)
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(a) KF (b) DLF (c) Truth

Figure 4.6: Posterior mean prediction as estimated by the (a) KF, and the (b) DLF, compared
to the (c) truth. Advection dominated case with α = 0.01, known initial phase θ = 0.5 and
spatially uncorrelated wave noise A = 0.05 and Ã = 0. The models use an incorrect initial
amplitude of σ = 0.7 as opposed to the initial amplitude of the truth σ = 1. Both filters
use I = 20 observations per observation time. The locations of observations are randomly
selected grid points, marked by black rings. Observation times are TO = {0.05, 0.1, ..., 0.45}.
The trajectories of pseudo-observations are shown as black lines. (In text mentions: p.121)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.7: Time series of (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of the KF
(red), the DLF (blue), averaged over 50 runs. Depicted are results from advection dominated
cases with α = 0.01, known initial phase θ = 0.5 and spatially uncorrelated wave noise
A = 0.05 and Ã = 0. The models use an incorrect initial amplitude of σ = 0.7 as opposed to
the initial amplitude of the truth σ = 1. Both filters use I = 20 observations per observation
time. The locations of observations are randomly selected grid points. Observation times are
TO = {0.05, 0.1, ..., 0.45}. (In text mentions: p.121)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.8: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue), DLF
(red), across 50 runs for spatially independent phase speed noise A = 0.05, Ã = 0, varying
difusion α =∈ {0, 0.001, 0.01}) and observations at I = 10, 20 and 40 random locations at
every observation time TO = {0.05, 0.1, ..., 0.45}. Initial amplitude is assumed uncertain with
σ = U

(
1
2 ,

3
2

)
and θ = 1

2 . (In text mentions: p.121)
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(a) KF (b) DLF (c) Truth

Figure 4.9: Posterior mean prediction as estimated by the (a) KF, and the (b) DLF, compared
to the (c) truth. Advection dominated case with α = 0.01, known initial amplitude σ = 1
and spatially uncorrelated wave noise A = 0.05 and Ã = 0. The models use an incorrect
initial phase of θ = 0.25 as opposed to the initial amplitude of the truth θ = 0.5. Both filters
use I = 20 observations per observation time. The locations of observations are randomly
selected grid points, marked by black rings. Observation times are TO = {0.05, 0.1, ..., 0.45}.
The trajectories of pseudo-observations are shown as black lines. (In text mentions: p.122)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.10: Time series of (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of
the KF (red), the DLF (blue), averaged over 50 runs. Advection dominated cases with
α = 0.01, known initial amplitude σ = 1 and spatially uncorrelated wave noise A = 0.05
and Ã = 0. The models use an incorrect initial phase of θ = 0.25 as opposed to the initial
amplitude of the truth θ = 0.5. Both filters use I = 20 observations per observation time.
The locations of observations are randomly selected grid points. Observation times are
TO = {0.05, 0.1, ..., 0.45}. (In text mentions: p.122)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.11: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue),
DLF (red), across 50 runs for spatially independent phase speed noise A = 0.05, Ã = 0,
varying difusion α =∈ {0, 0.001, 0.01}) and observations at I = 10, 20 and 40 random locations
at every observation time TO = {0.05, 0.1, ..., 0.45}. Initial phase is assumed uncertain with
σ = 1 and θ = U(0, 1). (In text mentions: p.122)
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(a) KF (b) DLF (c) Truth

Figure 4.12: Posterior mean prediction as estimated by the (a) KF, and the (b) DLF,
compared to (c) the truth. Advection dominated case with α = 0.01, known initial data
σ = 1 and θ = 0.5. Phase speed noise of the truth is assumed spatially correlated Ã = 1,
while both models assume Ã = 0, causing significant discrepancies in phase speed between
truth and model. Both filters use I = 20 observations per observation time. The locations of
observations are randomly selected grid points, marked by black rings. Observation times are
TO = {0.05, 0.1, ..., 0.45}. The trajectories of pseudo-observations are shown as black lines.
(In text mentions: p.123)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.13: Posterior mean prediction as estimated by the (a) KF, the (b) DLF, compared to
(c) the truth. Advection dominated case with α = 0.01, known initial data σ = 1 and θ = 0.5.
Phase speed noise of the truth is assumed spatially correlated Ã = 1, while both models
assume Ã = 0, causing significant discrepancies in phase speed between truth and model.
Both filters use I = 20 observations per observation time. The locations of observations are
randomly selected grid points. Observation times are TO = {0.05, 0.1, ..., 0.45}. (In text
mentions: p.123)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.14: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue),
DLF (red), across 50 runs for spatially correlated phase speed noise A = 0.05, Ã = 1, varying
difusion α =∈ {0, 0.001, 0.01}) and observations at I = 10, 20 and 40 random locations at
every observation time TO = {0.05, 0.1, ..., 0.45}. Initial data is assumed known initial σ = 1
and θ = 1

2 . (In text mentions: p.123)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.15: Average (a) RMS, (b) Mass, (c) CoM errors, and (d) Calibration of KF (blue)
and DLF (red) as a function of α, across 50 runs for spatially independent phase speed noise
A = 0.05, Ã = 0, and I = 20 randomly located observations available at every observation
time TO = {0.05, 0.1, ..., 0.45} with known initial data σ = 1 and θ = 1

2 . (In text mentions:
p.124)
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(a) RMS (b) Mass

(c) CoM (d) Calibration

Figure 4.16: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue),
DLF (red), as a function of α, across 50 runs for spatially correlated phase speed noise
(A = 0.05, Ã = 1) and I = 20 randomly located observations at every observation time
TO = {0.05, 0.1, ..., 0.45} with noisy initial data σ ∼ U [1

2 ,
3
2 ] and θ ∼ U [0, 1] (In text

mentions: p.124)
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