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Abstract

This dissertation consists of three integral self-contained parts. The first part develops a
novel Monte Carlo algorithm, called the near-Maximal Algorithm for Poisson-disk Sampling
(nMAPS), to efficiently generate the nodes of a high-quality mesh for the calculation of
flow and the associated transport of chemical species in low-permeability fractured rock,
such as shale and granite. A good mesh balances accuracy requirements with a reasonable
computational cost, i.e., it is generated efficiently, dense where necessary for accuracy, and
contains no cells that cause instabilities or blown-up errors. Quality bounds for meshes
generated through nMAPS are proven, and its efficiency is demonstrated through numerical
experiments.

In the second part, a deterministic Monte Carlo hybrid method for time-dependent
problems based on the physics of particle transport described through the linear Boltzmann
equation is presented. The method splits the system into collided and uncollided particles
and treats these sets with different methods. Uncollided particles are handled through
high-accuracy Monte Carlo methods, while the density of collided particles is calculated
using discontinuous Galerkin methods. Theoretical details of the algorithm are developed
and shown to be effective through numerical experiments. The properties associated with
the labeling as collided and uncollided leverage the respective strengths of these methods,
allowing for overall more accurate and computationally efficient solving than each method on
its own.

In the last chapter, an extension to the Dynamic Likelihood Filter (DLF) is presented to
include Advection-Diffusion equations. The DLF is a Bayesian estimation method specifically
designed for wave-related problems. It improves on traditional methods, such as variants

of Kalman filters, by not only using data at its time of observation but also at later times

vi



by propagating observations forward through time. This enriches the available data and
improves predictions and uncertainties. The theory to include diffusion in the framework
of the DLF is developed, and it is shown through numerical experiments that the DLF
outperforms traditional data assimilation techniques, especially when observations are precise

but sparse in space and time.
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Chapter 1

Introduction and Outline

Partial Differential Equations (PDEs), that is equations which depend on various partial
derivatives of their solution functions, have, for a long time, been a cornerstone in natural
sciences such as physics and engineering. They are fundamental in our understanding of the
world and are at the core of some of the most influential theories of our time such as Quantum
theory, Fluid dynamics, General relativity and many more. Outside of the natural Sciences
their range of applications stretches from purely Mathematical considerations like Differential
Geometry or Variational Calculus to the description of complex systems in Computer Science,
Neuroscience and Social Sciences. Stochastic Partial Differential Equations (SPDEs), that
generalize PDEs through the inclusion of random variables as Forces and coefficients, are
widely applied in Financial Sciences, Statistical Mechanics, Weather and Climate modeling
and many more areas. While there is a vast and still growing body of theories discussing
and classifying the existence and uniqueness and various other properties of solutions to
PDESs, it is widely understood that finding an explicit solution to a given equation by hand
is the exception not the rule, particularly as systems become more complex. In applications
approximate solutions are usually generated through numerical methods using computers.
Following the 'No free lunch theorem’ acceptable accuracy of such an approximation
usually needs to be balanced with the computational complexity required to find it. While
this has led to the development of better and bigger hardware, the fact that accuracy of
solvers and complexity often times do not relate linearly makes simple upscaling of a problem

prohibitively expensive in many cases. Thus the development of methods with a better



trade-off between accuracy and computational complexity is a very active area of research
tackled by experts in many fields. Such algorithmic attempts at tackling this issue include,

but are not limited to:

tailoring the way of approximation to a specific problem.
o direct simulation of systems using deterministic or Monte Carlo methods.

o the application of Machine learning methods such as Deep neural networks either

instead or as part of an existing solver.

 the incorporation of real-life data to improve the predictions of solvers.

The following chapters of this dissertation are comprised of three manuscripts that tackle
the issue of improving accuracy of solutions to PDEs or the predictions derived from them
via one or more of the ideas just listed. They are structured as follows.

The manuscript in Chapter two, "Variable resolution Poisson-disk sampling for meshing
discrete fracture networks’ [3], covers an approach for the transport equation that tailors the
discretization of the problem to the specific problem. The main body of work focuses on
an algorithm that can provide this discretization quicker than previously existing methods,
thus leading to a net speedup in computation time. The algorithm is specifically designed
to provide meshes for Discrete Fracture Networks (DFN), which are commonly used in
the simulation of fractured materials. DFN explicitly simulates fractures with the same
distribution as the fractures in the actual material. Our two-phase algorithm first randomly
generates a 2D mesh on the fractures. It then utilizes this 2D mesh as a foundation to
construct a 3D mesh on the surrounding material. The nodes of both the initial 2D and
the 3D mesh are generated through Poisson disk sampling. Poisson disk samples exhibit
provably favorable properties for 2D triangulation. We establish stringent bounds for mesh
quality in the 2D part of the algorithm and numerically test their validity. In 3D, Poisson
disk samples do not inherently ensure high-quality meshes. However, we found that in 3D
triangulations of Poisson disk samples, low-quality elements of a mesh are exceedingly rare.

Through numerical experimentation with the 3D part of our algorithm, we demonstrate that



rejecting nodes that lead to low-quality elements and subsequently resampling is a successful
strategy for obtaining high-quality 3D meshes within reasonable computation time.

Chapter three is based on the manuscript "A Hybrid Monte Carlo, Discontinuous Galerkin
method for linear kinetic transport equations’ [1]. In it, we present an algorithm to solve the
linear Boltzmann equation, a linear kinetic equation describing the free transport of particles
scattering off a medium. It is used to model many systems, including neutronic dynamics,
radiation transfer, cometary flow, and dust particles. Generalizations find applications in
colloidal systems, fluid dynamics, and non-equilibrium thermodynamics. Common approaches
to finding a solution are Monte Carlo methods using ideas based on direct simulation of the
particles or discretization methods. Examples of the latter would be the use of Discontinuous
Galerkin (DG) methods. While the latter reduces the problem to systems of linear equations,
the coupling of the PDEs causes the dimension of these linear systems to become prohibitive at
high accuracies. While Monte Carlo methods do not suffer from this curse of dimensionality,
they become substantially less efficient if the number of scattering events is increased.
Conveniently, DG methods excel in the diffusion limit, that is at intermediate to high
scattering probabilities, producing acceptable results at relatively low cost. Thus MC and
DG appear to complement each other well. We put this fact to the test in this manuscript.

The algorithm presented in chapter three combines MC and DG into a hybrid method
that splits the original PDE into scatter-free subequations that are perfectly suited for high
accuracy Monte Carlo methods and another set of subequations that are taking care of the
scattering. Through smart handling of the interactions of these split equations, we see that it
suffices to solve the scattering equations with relatively cheap, low accuracy DG-methods
without a substantial loss in overall accuracy. The result is a method that is comparable
in accuracy and run time, even though not strictly better than MC in low scattering cases
and significantly more efficient than MC and DG respectively in cases with higher scattering
without sacrificing accuracy.

Lastly, in chapter four, titled ’A Dynamic Likelihood Approach to Filtering for Advection
Diffusion Processes’ [2], a Bayesian filtering algorithm is introduced. Such filtering algorithms
use a noisy/inaccurate model along with also noisy data to describe a real-life system. In

this case, the real system is assumed to be governed by a stochastic PDE. The goal is to find



the best estimator of the true state of a system conditioned on the data and the model. This
adds a new dimension to the notion of accuracy, as we are now not only interested in how well
a numerical solution approximates an analytical solution of a PDE. Now we care about how
well a real system is approximated, adding a modeling error on top of the numerical errors
considered so far. Classical algorithms will minimize the expected error between Model and
reality at any time at which data is available. The dynamic likelihood filter introduced in this
chapter extends this by using the available data to generate simulated data at times between
observations. While this adds an additional modeling error we can show that minimizing the
expected error not only through real but also simulated data yields a net increase in accuracy
in prediction in settings where data is sparse, but accurate. Specifically we show how this
method can be used in the context of stochastic advection diffusion equation and compare the
newly developed method to a Kalman filter in the same context. We demonstrate numerically
that our method, the Dynamic likelihood filter (DLF), outperforms the classic filter in terms
of accuracy in many cases. We show advantages specifically in settings with sparse, but
accurate data as well as very inaccurate or even ill-informed models. An interesting feature
of the DLF is its capability of providing Bayesian estimates at future times.

Lastly, in Chapter Four, titled A Dynamic Likelihood Approach to Filtering for Advection
Diffusion Processes’ [2], an introduction is made to a Bayesian filtering algorithm. Such
filtering algorithms use a noisy/inaccurate model along with noisy data to describe a real-life
system. This introduces an additional aspect to the concept of accuracy. Now, we not only
seek to understand how well a numerical solution approximates an analytical solution of a PDE.
Classical algorithms will minimize the expected error between model and reality at any time
at which data is available, utilizing real observations only. However, our approach extends this
by incorporating simulated data, which we refer to as pseudo-Observations. We demonstrate
how this can be done specifically for systems governed by stochastic advection diffusion
equations. In cases where advection dominates information is travels along the characteristics
of the PDE, which is reflected in the fact that we evolve pseudo-observations along these
characteristics. Accounting for difusion and noise along these characteristics is non-trivial and
requires some feedback from the model. Although having to simulate pseudo-observations

introduces an additional modeling error, we can demonstrate that minimizing the expected



error through both real and simulated data leads to a net increase in prediction accuracy,
particularly in settings where data is sparse but accurate. We demonstrate numerically that
our method, the Dynamic likelihood filter (DLF), outperforms the classical Kalman filter in
terms of accuracy in many cases. We show advantages specifically in settings with sparse, but
accurate data as well as very inaccurate or even ill-informed models. An interesting feature

of the DLF is its capability of providing Bayesian estimates at future times.
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Chapter 2

Variable resolution Poisson-disk
sampling for meshing discrete fracture

networks



2.1 Disclosure

This chapter is, up to formatting identical to the paper of the same name [40]. The paper is
a collaborative work with Matthew R. Sweeney, Carl W. Gable Jeffrey D. Hyman and Juan
M. Restrepo and was published in the Journal of Computational and Applied Mathematics
in 2022. Ideas and theoretical results newly presented in this paper were worked out by
Johannes Krotz under their guidance. Numerical experiments presented were executed by
Johannes Krotz using software implemented in Python also by Johannes Krotz. All coauthors

wrote and edited the paper together.

2.2 Abstract

We propose a two-stage algorithm for generating Delaunay triangulations in 2D and Delaunay
tetrahedra in 3D that employs near maximal Poisson-disk sampling. The method generates a
variable resolution mesh in linear run time. The effectiveness of the algorithm is demonstrated
by generating an unstructured 3D mesh on a discrete fracture network (DFN). 2D Poisson-disk
samplings on the DFN are generated through a cell-based rejection algorithm. After an initial
sampling the grid-cells are used to fill in holes in the sampling in order to obtain a near-maximal
Poisson-disk sampling. The 2D-sample on the DFN is then used as seed for a 3D algorithm,
that generates a conforming 3D-Poisson-disk sampling on the surrounding volume of the
DFN. Low quality tetrahedra are removed from the 3D-sampling and replaced in a resampling
process. Even though Poisson-disk sampling methods do not provide triangulation quality
bounds in more than two-dimensions, we found that low quality tetrahedra are infrequent
enough and could be successfully removed to obtain high quality balanced 3-dimensional

meshes with tetrahedra topologically acceptable for the application in DFN.

2.3 Introduction

There are a number of methods used to model flow and the associated transport of chemical
species in low-permeability fractured rock, such as shale and granite. The most common

are continuum models, which use effective medium parameters [21, 42, 56, 57, 68, 70] and
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discrete fracture network/matrix (DFN) models, where fractures and the networks they
form are explicitly represented [10, 44, 58]. In the DFN methodology, individual fractures
are represented as planar N — 1 dimensional objects embedded within an N dimensional
space. Both conforming methods, where the mesh conform to intersections [30, 52, 53], and
non-conforming methods, which use more complex discretization schemes so the mesh does
not need to be conforming [5, 18, 59, 60], are currently in use. If the matrix surrounding
the fracture network needs to be meshed, complications of mesh generation are compounded
for both conforming and non-conforming methods [4]. While the explicit representation of
fractures allows for DFN models to represent a wider range of transport phenomena and
makes them a preferred choice when linking network attributes to flow properties [25, 31, 29],
it also leads to unique and complex issues associated with mesh generation.

We propose a two stage algorithm that generates a conforming variable resolution triangular
mesh on a three-dimensional discrete fracture network. The proposed algorithm uses maximal
Poisson-disk sampling to efficiently produce the point distribution used to generate the mesh
of each fracture with controlled mesh resolution. The first stage is based on the framework
presented in [14], that uses a rejection algorithm to generate an initial Poisson-disk sampling
with linear runtime in the number of points generated. The second phase is based on the
framework presented in [49] and adds additional points to the samples. This second steps
maximizes density without violating the restrictions of a Poisson-disk sampling.

Once a Poisson-disk sampling is generated, a conforming Delaunay algorithm [51] is used
to connect this point distribution where lines of intersection between fractures form a set of
connected edges in the Delaunay triangulation of the network. The time it takes to generate
the samplings scales linearly with the number of nodes. While it is not guaranteed that the
density of our Poisson-disk sampling is maximal, i.e. no further nodes can be added without
violating the restrictions on distances between nodes, we show that in practice our samples
are maximal enough to obtain high quality meshes. We also present a three-dimensional
version of the method that can be used to create a tetrahdron mesh of the volume surrounding
the network that conforms to the fracture network.

In section 2.4, we describe the challenges in the DFN mesh generation and the general

properties of maximal Poisson-disk sampling. In section 2.5, we provide a detailed explanation



of our method, for both 2D fracture networks and 3D volume meshing. In section 2.6, we
propose metrics to access the quality of the mesh and run times for both 2D and 3D

demonstration examples. In section 2.7, we provide a few remarks.

2.4 Background

2.4.1 Discrete Fracture Networks: Mesh Generation Background

Due to the epistemic uncertainty associated with hydraulic and structural properties of
subsurface fractured media, fracture network models are typically modeled probabilistically
[54, 55, 57]. In the DEN methodology, individual fractures are placed into the computational
domain with locations, sizes, and orientations that are sampled from appropriate distributions
based on field site characterizations. The fractures form an interconnected network embedded
within the porous medium. Each fracture must be meshed for computation, so that the
governing equations for flow and transport can be numerically integrated to simulate physical
phenomena of interest.

Formally, each fracture in a DFN can be represented as a planar straight-line graph
(PSLG) composed of a set of line segments that represent the boundary of the fracture and a
set of line segments that represent where other fractures intersect it. Then each fracture can
be described by a set of boundary points on the PSLG, denoted {p}, and a set of intersection
lines {¢; ;}, where the subscripts ¢ and j indicate that this line corresponds to the intersection
between the ith and jth fractures. Once {p} and {/; ;} are obtained for every fracture in
the network, a point distribution covering each fracture must be generated. If a conforming
numerical scheme is used, then all cells of {/; ;} are discretized lines in the mesh which must
coincide between intersecting fractures. So long as minimum feature size constrains are met,
a conforming triangulation method, such as presented in [51], can be implemented to connect
the vertices such that all lines of intersection form a set of connected edges in a triangulation.

In general, one wants to properly resolve all relevant flow and transport properties of
interest while minimizing the number of nodes in the mesh, and these two goals compete. A

uniform mesh resolution is straightforward to generate and appropriate for Eulerian transport
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simulations. However, spatially variable numerical diffusion means that the resulting mesh will
need a very small resolution to accurately capture solute fronts.[2] Variable mesh resolution
can be appropriate for single-phase flow simulations or in particle tracking simulations where
the spatially variable resolution does not adversely affect transport properties. However,
this variable mesh generation is more complex than its uniform counterpart. One of the
principal complications of variable mesh resolution generation is creating a smooth transition
of cell sizes. Absent that, jumps in the computed fields of interest and other numerical
artifacts will occur. the starting point for the notion of mesh quality would appear to be the
analysis leading to the minimum angle condition that the smallest angle should be bounded
away from zero. This originated with Zlamal [71] and is quoted by Strang and Fix [65]
together with a statement regarding how poorly shaped triangles may have an effect on
the condition number of the linear algebra problem that must be solved. This result was
improved by Babuska and Aziz [1]. Most methods for the generation of a conforming DFN
mesh use a uniform point distribution on the networks and then modify the connectivity
locally to conform to intersections [52, 53]. When using a conforming mesh, the numerical
methods for resolving flow and transport in the network are typically simpler and have
fewer degrees of freedom compared to non-conforming mesh methods [20]. Similarly, almost
all non-conforming numerical methods use a uniform resolution, but some create variable
resolutions across fractures (still uniform within a single plane) in an attempt to reduce the
number of total nodes in the mesh [6]. A variable mesh resolution in non-conforming schemes
could drastically reduce the number of nodes in the mesh while retaining the the ability to
retain higher orders of accuracy. However it is rarely implemented due to the associated
meshing complications [8].

The generation of a variable resolution, unstructured conforming mesh is quite rare, even
with the advantages noted above. One technique in use is the Features Rejection Algorithm for
Meshing (FRAM) that addressed the issues associated with conforming DFN mesh creation
by coupling it with network generation [30]. Through this technique, FRAM allows for the
creation of a variable resolution mesh that smoothly coarsens away from intersections where
pressure gradients are typically the highest in flow simulations. FRAM has been implemented

in the computational suite DFNWORKS [33], which has been used to probe fundamental
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aspects of geophysical flows and transport in fractured media [27, 28, 35, 37, 46, 64] as well
as practical applications including hydraulic fracturing operations [26, 38, 45], inversion of
micro-seismicity data for characterization of fracture properties [50], the long term storage
of spent civilian nuclear fuel [25], and geo-sequestration of carbon dioxide into depleted
reservoirs [32].

However, the implementation used is an iterative refinement method for point distribution,
which is very inefficient. To triangulate each polygon a ‘while‘ loop was executed to apply a
Rivara refinement algorithm to an initially coarse distribution based on the boundary set
{p}. If an edge in the mesh is greater than the current maximum edge length, a new point is
added to the mesh at the midpoint of that edge to split it in two.

In practice, the edge splitting is done using Rivara refinement [62, 63]. The resulting field
is then smoothed using Laplacian smoothing in combination with Lawson flipping [39]. This
process is repeated until all edges met the assigned target edge length, which could be a
spatially variable field based on the distance to {/; ;}, for example. While the resulting mesh
quality is quite good, the process is inefficient and cumbersome.

The superior modeling qualities of variable resolutions can be made practical, if
implementation complexities can be addressed. We do so here using a Poisson-disk sampling
methodology where the final vertex distribution is directly created rather than iteratively
derived. While the method was initially designed to specifically improve FRAM, we provide
the details in a general format such that it can be implemented for any discrete fracture
network methodology, including those that use both conforming and non-conforming flow and
transport simulations. Details are given for Delaunay triangulations, which are of importance
in many two-point flux finite volume solvers as they are used to generate the Voronoi control
volumes on which these solvers compute. In the next section, we recount the properties
of maximal Poisson-disk sampling that we used to design and implement this new method.
Further we recount theoretical bounds on mesh gradation that ensure high-quality variable

mesh resolutions.
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2.4.2 Maximal Poisson-disk Sampling

Meshes from a sample that is dense yet cluster free have provable high quality bounds
[7, 12, 16]. Similar quality bounds can be established for sphere-packings, whose radii are
Lipschitz continuous with respect to their location [47, 48, 66]. Maximal, or almost maximal,
Poisson-disk samplings fulfill all these conditions leading to high-quality meshes. Traditionally,
Poisson-disk samplings are generated with an expensive dart-throwing algorithm [13]. These
algorithms struggle to achieve maximality as the probability to select a free spot becomes
decreasingly small. The algorithm in [49] based on these dart-throwing algorithm is the first
to guarantee maximality and reaches run times of O(nlog(n)) (n : number of points sampled)
by using a regular grid for acceleration and sampling from polygonal regions in its second
phase to achieve maximality. They report close to O(n) performance in practice [15, 17, 49].
Prior to that, an algorithm not based on dart-throwing was proposed in [9], which while not
guaranteeing maximality, showed linear performance in the number of nodes sampled. Their
algorithm was extended to variable radii in [14]. Other authors further provide algorithms that
produce variable Poisson-disk samplings on 3D-surfaces[23],[24]. Their triangulation-based
algorithm runs in linear time, and while theoretically not guaranteeing maximality, their
experimental results suggest that maximality is achieved. A summary of relatively recent
developments in this area along with comparison of different methods can be found in [69].
added references mentioned by reviewer 1, except for PushPull | the algorithm in there starts
with non PDS and starts moving points around. Since this is specifically what we’re trying to
avoid it doesn’t seem suitable imo. Maximal Poisson-disk samplings X on a domain Q C R?

are random selections of points X = {x;} ,, that fulfill the following properties:

1. empty disk property:
Vi#je{l,.,n}:|x;—x;| >

We will call r the inhibition radius,

2. maximality:
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where B.(x) ={y € Q: |x —y| < y} is the open ball of radius ¢ around x. R will be

called the coverage radius. [49]

Intuitively, the empty disk property says that every sample point is at the center of d-
dimensional ball or disk that does not contain any other points of the sampling. Mazimality
implies that these balls cover the whole domain, i.e., there is no point y € €2, that is not
already contained in one of the balls around a point in the sample.

It is useful to generalize these definitions, such that both the inhibition and the coverage
radius depend on the sampling points, i.e. r = r(x;,%;) and R = R(x;,x;) for all x;,x,; € X.
We hereon refer to this construct as a variable radii maximal Poisson-disk sampling, and we
refer to a Poisson-disk sampling with constant radii as a fixed-radii maximal Poisson-disk
sampling. [49]

A common approach is to assign each point x € Q a positive radius p(x) and have r(x;, x;)
be a function of p(x;) and p(x;). Natural choices for r(x;,x;) are, for example, p(x;) or p(x;)
for i < j, thereby determining the inhibition radius depending on the ordering on X. Order
independent options include min(p(x;), p(x;)), max(p(x;), p(x;)) or p(x;) + p(x;). The last of
these options corresponds to a sphere packing [49]. The coverage radius can, but does not
have to be different from p.

The Delaunay triangulation of a sampling maximizes the smallest angle of its triangles
among all triangulations of this sampling [43]. Since numerical errors in many applications
tend to increase if these angles become smaller [71], Delaunay triangulations often are a
triangulation of choice. Moreover, the dual of the Delaunay triangulation is a Voronoi
tessellation, which in a certain sense is optimal for two-point flux finite volume solvers [19],
that are commonly used in subsurface flow and transport simulators such as FEHM [72],
TOUGH2 [61], and PFLOTRAN [41]. In case of maximal Poisson-disk samplings we can go
one step further and give a lower bound on these angles. In what follows we estimate the
bounds that apply to the sampling we generate on DFN in later sections. We provide a brief
summary of the proofs found in [49], while highlighting the most important results we use.

We then proceed with the new bounds.
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A

2R), where 1 is the

Lemma 2.1. The smallest angle o in any triangle is grater than arcsin(

length of the shortest edge and R the radius of the circumcircle or

sin(a) (2.1)

r
>
~— 2R
Proof. This is a direct corollary of the central angle theorem. O

This Lemma allows us to give explicit bounds for maximal Poisson-disk samplings. While
we will focus entirely on inhibition radii given by r(x;,x;) = min(p(x;), p(x;)), where p(x) is
some positive function, comparable results can be found for different r(x;,x;) in a similar

fashion.

Lemma 2.2. Let e >0 and p: R" = R (n > 2) be a positive Lipschitz continuous function
with Lipschitz constant L with Le < 1. Let X C be a variable maximal Poisson-disk sampling
on the domain Q@ C R™ with inhibition radius r(x,y) = min(p(x), p(y)) and coverage radius
R(x,y) < (1+4¢e)r(x,y).( >0)

Let the triangle A be an arbitrary element of the Delaunay triangulation of X (n =2) or an
arbitrary 2-dimensional face of a cell of the Delaunay triangulation of X.

If the circumcenter of A is contained in $), each angle o of A is greater or equal to

1-L—¢cL
242

arcsin ( 5) or

sin(a) > ﬂ.

- 242
Proof. Let a be the smallest angle of A and x,y € X be the vertices of the shortest edge of
A, i.e. the vertices opposite to a. Without loss of generality assume p(x) < p(y). Since X is
a Poisson-disk sampling |x — y| > min (p(x), p(y)) = p(x).
Now let z € Q be the circumcenter of A. Since X is maximal, there exists v € X with
|z —v| < R(z,v) < (1 +¢)p(z). Next we notice that, because A was retrieved from a

Delaunay triangulation v cannot be contained in the interior of A’s circumcircle. Hence

7z —x| <z —v|<(1+e)p(z) < (1+¢)(p(x) + L|z —x|).
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Rearranging this inequality yields

1+¢

—x| < - -
2= x| < p(x) 7 ——

The result follows by applying Lemma 2.1 after noticing that |x — y| is the length of the

shortest edge and that |z — x| is the radius of the circumcirle. ]

Remark 2.4.1. Note that for n > 2 the same result is true, if we assume the circumcenter
of the n-simplex, of which A is a face, is contained in §2 instead of the circumcenter of A

itself. The proof is identical.

Remark 2.4.2. While this result allows to control the quality of 2D-triangulations of maximal
Poisson-disk samplings, it can also be used to gauge how close a given Poisson-disk sampling

is to being mazimal.

The previous Lemma only gives us bounds on all triangles, if their circumcenters are
contained in 2. The next two Lemmas will give sufficient conditions to guarantee exactly

this as long as €2 is a polytope.

Lemma 2.3. Let Q C R? be a polygonal region and X a maximal Poisson-disk sampling

containing all vertices of Q). Let the inhibition radius r(X,y) be defined like in the previous

lemma. Further let the coverage radius of X N6Q fulfill R (x,y) < Vg();ijl)’ e |x—y| <
V2

mT(X, y) forallx,y € 0QNX, the circumcenter of all triangles in the Delaunay triangulation

of X are contained in .

Proof. Suppose this claim is wrong. Then let A be a triangle in the Delaunay triangulation
with circumcenter z ¢ Q. For this to be possible the circumecircle needs to be cut in (at
least) two pieces by 0€2, separating z and the vertices of A. Since A is part of a Delaunay
triangulation and all vertices of  are part of the sampling, this is done by (at least) one
segment of a straight line, i.e. d{2 contains a secant of the circumcircle.

Let by, by € 62 be the two boundary points closest to the circumcircle on either side of that
line segment and let B be the disk bounded by the circumcircle. Note that B N € contains

A and is itself entirely contained in the disk of radius §|b; — bs| < %p%r(bl, by) around
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(b1 + by).
Now let x ¢ {by, by} be a vertex of A and let b € {by, by} be the point of the two, that
is closer to x. We already established that x lies within the just mentioned ball around

%(bl +by). Let x, be the projection of x onto the line segment connecting b; and by. Then

1V2

517 (b1, b2), because x lies within the circle of that radius, |x, —b| < L2 by by),

x—x,| < 2140

because b is the closer of the two points by, by and therefore

7(by, by) < p(b)
1+L — 1+ L

x—bl=y/lx =%+ [b—x,[2 < < p(b). (2.2)
Since |x — b| > min(p(x), p(b)) this implies |x — b| > p(x). However assuming this and
applying the Lipschitz condition on (2.2) gives us

p(b) < 1 1+ L

—b Lix —b|) <
x = bl < 220 < (p(x) + Lix — b) <

—b
1+LIX ;

which is a contradiction. O

Remark 2.4.3. Lemma 2.5 does generalize to higher dimensions. It is not very practical
because it is difficult to quarantee the bounds on R?, if the boundary is more than 1-dimensional.
However it is still possible to get some bounds on the radii of the circumcircles and then,
using Lemma 2.1, on the angles, if the distance of non-boundary nodes is greater than some

lower bound d > 0.

In fact, using notation from the previous proof, let A again be an n-simplex with
circumcenter outside of  and x ¢ 082 on of its nodes. Since the circumsphere of any
simplex in a Delaunay triangulation does not contain any other nodes the radius of the
intersection with 6§ is bounded by R°. One can show using simple geometric arguments that

this forces the radius of A’s circumsphere R to fulfill the following inequality

&+ (R’ (R‘;)Q.

2 2 5\ 2
R*<(R—d?+(R) = R< <

(2.3)
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If RO(x,y) < r(x,y) there is a lower bound on d, continuously depending on R°, solely due
to the fact, that we have a Poisson-disk sampling. If R® = R‘s(xp, b) is any bigger, d needs
to be bounded artificially. This implies that the angle bounds change continuously, if the
conditions for Lemma 2.3 cannot be met they still can be relatively controlled by the choice of

the artificial bound on d.

Under the conditions of the previous Lemmas the simplices of the Delaunay triangulation
are guaranteed to only have well-behaved triangular faces. In three or more dimensions
however this does not imply that the simplices themselves are well-behaved. It is still possible
for a Delaunay triangulation to contain slivers for example, that is tetrahedra whose 4 nodes
are all positioned approximately on the equator of their circumsphere. In [11] slivers are
characterized as tetrahedra, whose nodes are all close to a plane and whose orthogonal
projection onto that plane is a quadrilateral. In [3] slivers are equivalently classified as
tetrahedra with a dihedral angle close to 180° containing their own circumcenter. Slivers can
have all their faces be equilateral triangles, yet have dihedral angles that are arbitrarily small,

causing numerical errors to blow up.

While slivers cannot be entirely avoided, one can show that if the nodes x,y,z,w of a
maximal Poisson-disk sampling form a sliver, the distance between w and the plane spanned
by X,y,z needs to be very small [11]. This allows us to avoid slivers within certain planes, by
first generating a 2D sampling in these planes and then enforcing a minimal distance between
the plane and further nodes in the 3D sampling. We use this to avoid slivers around the
DFN and the faces of the surrounding matrix. This also causes slivers to be rather scarce in
a 3D maximal Poisson-disk sampling as given any three nodes the vast majority of possible
positions of a fourth node do not produce a sliver. This scarcity of slivers in a sampling makes
it quite likely that if nodes of slivers are removed and resampled the resulting triangulation
will have less slivers than the previous one. This opens the door for a rejection-style algorithm

to be successful in improving the overall quality of a triangulation.
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2.5 Methods

Our proposed method for mesh generation is broken into three primary steps. First, we
generate a 2D point distribution on each fracture in the DFN. After merging these samples
and removing conflicts with regards to the empty disk property, we generate a 3D-Poisson
disk sampling on the surrounding matrix by adding points wherever maximality allows it.
Finally, in an attempt to remove slivers, we remove their nodes and randomly replace them

until no slivers remain.

2.5.1 2D Sampling Method

We generate 2D Poisson-disk samplings in a successive manner using a rejection method.
This method can be performed on every fracture in the network independent of the other
fractures. (Details can be found in [30].) In each step a new candidate is generated, and if it
does not break the empty disk-property with any of the already accepted nodes, it is accepted.
For the sampling in two dimensions, we use a variable inhibition radius that increases linearly
based on the distance to the closest intersection of the DFN.

In particular, we reject a candidate node y, if there is an already excepted node x such

that the condition

x —y| > r(x,y) = min(p(x). p(y)) (2.4)

is violated. In this equation p(x) as a piecewise linear function given by

4 for D(x) < FH
p(x) = p(D(x)) =S A(D(x) — FH)+ 1 for FH<D(x)<(R+F)H. (2:5)
(AR+ $)H otherwise

Here D(x) is the Euclidean distance between x and the closest intersection. H, A, R and F are
parameters, that determine the global minimal distance between two nodes (H/2), the range
around an intersection on which the local inhibition radius remains at its minimum (FH),

the global maximal inhibition radius (ARH + H/2), and the slope at which the inhibition

19



radius grow with D(x) (A). Since p(D) is piecewise linear, it is a Lipschitz-function with
Lipschitz-constant A.

If the sampling has a coverage radius R(x,y) < (1+¢&)r(x,y) for some ¢ > 0 the conditions
of (2.2) hold. To satisfy the conditions of (2.3) as well and thereby ensure angle bounds on all

triangles in a Delaunay triangulation we first sample along the boundary, enforcing a maximal

r(%,y)
V2(1+L)

candidates for our sampling randomly on an annulus around an already accepted node. This

distance of between boundary nodes. As shown in [9] and [14], we generate new

is illustrated in Figure 2.1. The inner radius of this annulus is determined by the minimal
distance another node could have to the center node, while still preserving the empty disk
property, whereas the outer radius is determined by the maximal distance a node could have

to the center in a maximal sampling. For our choice of inhibition radius, assuming the same

radius as coverage radius, these distances can be made out to be f%)‘ for the inner radius
2p(x)

% for the outer one.

and

We will now go over the individual steps of the 2D algorithm. These steps can also be
found in the pseudocode Algorithm 1 in Section 2.5.3 and are illustrated in figure 2.3. The
necessary notation to read the pseudocode is found in the table at the start of the same
section. In line 3 of that code a 1D Poisson-disk sampling along the boundary of the polygon
is generated as a seed to start the algorithm. We continue to sample k£ new candidate nodes
at a time (line 13) around each already accepted node and determine whether they get
accepted or not (lines 14 through 22). k is a positive integer and a user-defined parameter
of the algorithm. If all k£ candidates around a node are rejected, we move on to the next
already accepted node (line 30). The algorithm terminates for the first time as soon as
every accepted node was the sampling center once(line 31). Following [9] and [14], we use
cell-lists to find nodes around a candidate that could potentially cause this candidate to
violate the empty-disk property, as depicted in Figure 2.2(a). The size of these cells is chosen
to contain at most one node. This allows us to disregard distance calculation with nodes
beyond a certain cutoff and therefore allows us to achieve linear run times in the number
of generated nodes (line 17). However, unlike the previously mentioned algorithms we do
not only label cells containing particles as occupied, but also cells that are too close to an

accepted node to contain a particle. In particular, if a candidate x lies in a cell C' and any
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other cell D with diam(C U D) < r;,(x) is occupied, x can be rejected right away as it
conflicts with the node in D (line 14). On the other hand, if dist(C, D) > p(x), there is
no need to calculate the distance between x and any potential element of D, as they can
never violate the empty disk-property. An example of that is shown in Figure 2.2(b). We
use this to our advantage in two ways: First, it allows us to reject many candidates without
calculating any distances to nearby nodes, which particularly for large values of k gives a
respectable speedup compared to the original algorithm; second, unmarked cells are easy
to find and contain at least some space for another node, allowing us to find undersampled
regions after the algorithm terminated(line 2). We fill these holes in the sample by generating
random candidates within these unmarked cells(line 3). The main algorithm is then restarted
from these newly added nodes until it terminates again (line 16). While this process can be
repeated several times, just a single resampling already increases the quality of the sampling
tremendously.

Once the point distribution is created, the conforming Delaunay triangulation method
of [51] is used to create the final mesh on the fracture. In order for a conforming Delaunay
triangulation which preserves the lines of fracture intersections as a set of triangle edges to be
created, it is sufficient that the circumscribed circle of each segment of the discretized line of
intersection be empty of any other node in the point distribution prior to connecting the mesh.
To achieve this condition, any node within the circumscribed circle of each segment of the
discretized lines of intersection is removed from the point distribution. Next, a 2-dimensional
unconstrained Delaunay triangulation algorithm is used to connect this node set. Because
of the construction method, i.e., empty regions around the lines of intersection, the line
segments that represent lines of fracture intersection must emerge in the triangulation and
the Delaunay triangulation will conform to all of the fracture intersection line segments. Once
every fracture polygon is triangulated, they are all joined together into a unified triangulated

fracture network.

2.5.2 3D sampling method

The sampling in 3D works very similar to its 2D counterpart. However, new candidates are

generated on a spherical shell around accepted nodes instead of on an annulus. The 3D
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Figure 2.1: Visualisation of a single sampling step. Current node at center, new candidates
in annulus (k=4). Inner circle is bounded by the inhibition radius of the current node.
Outer circle is bounded by maximal distance a node could be away from the current if the
Poisson-disk sampling was maximal.  (In text mentions: p.20)

(a) (b)

Figure 2.2: Visualisation of how the grid is used to find possibly conflicting nodes. New
candidate in red, already accepted nodes in green, cells that can contain conflicting nodes in
grey. Red circle shows the inhibition radius of the candidate, blue circles show furthest cells
a node in the center cell could conflict with. (In text mentions: pp.20,21)
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Figure 2.3: Overview of workflow between creation of DFN and final mesh (left) and overview
of workflow during 2D-sampling (right). (In text mentions: pp.20,25)
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variant of p(x) given by

pa(xp) for D(x) < Fps(x,)
p(x) = p(D(x)) = § A(D(x) — Frap(x,)) + & for Fpop(x,) < D(x) < Pma%j?(xrﬂ _

Prmaz otherwise

(2.6)

x, the fracture point closest to x and pa(x,) is its 2D inhibition radius on the fracture. D(x)
is the distance between x and x,. Like in 2D, this is a piecewise linear function in D(x), which
is constant, if within a distance of po(x,)F (F a parameter) and then increases linearly with
a slope of A until the maximal inhibition radius of p,,.. is reached. In addition to rejecting
all candidates y for which (2.4) is violated, we also reject a candidate x, if it is within a
distance of p(x)/2 to a boundary or fracture. This both prevents slivers from having three
nodes located on a single fracture or the boundary of the matrix and limits the circumradius
of tetrahedra with circumcenter outside of the matrix (lemma 2.3 and subsequent remark).

A pseudocode of how the 3D-sampling is run from here can be found in Section 2.5.3
in Algorithm 2 . The necessary notation is listed in the table at the start of that section.
As the first sampling process is essentially identical to the 2D version, we will explain the
differences in the initialization and the resampling. At the start, the nodes are initialized
through a Poisson-disk sampling on the boundary of the 3D matrix and the sampling on the
DFEN generated by the 2D algorithm (line 2). Neighbor cells can still be used in the same
way as in 2D to speedup the rejection of candidates. Unlike in 2D, a maximal Poisson-disk
sampling does not guarantee sliver-free triangulation, which is why we do not use the cell
lists to find undersampled cells in 3D. Instead, once the algorithm terminates, the resulting
sampling is triangulated (line:10), slivers identified (line:11), and 2 nodes of every sliver (with
a preference for nodes, that are neither on a boundary or a fracture) removed (line 12). While
the definition of a sliver given earlier in section 2.4.2 allows for a bit of leeway in what is
considered a small or large dihedral angle, in practice we successfully replaced tetrahedra with

dihedral angles outside of [8°,170°] and aspect ratios bigger than 0.2. Then the algorithm is
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restarted with the remaining nodes as seed (line 15). This process is repeated til a sliver-free
sampling is obtained(line 16). With this approach we have been able to obtain triangulations
with no elements of dihedral angles of less than 8° (presented in next sections). The method
for generating the conforming mesh is similar to that for the 2-dimensional case, but spheres

around triangle cells of the fracture planes are excavated. Additional details are found in [36].

2.5.3 Workflow Overview & Pseudocode for the 2D and 3D
sampling algorithms

The workflow is depicted in Figure 2.3 and contains the following high-level steps: (1)
generation of a DFN using dfnWorks [34], (2) decomposition of DFN into individual polygons,
(3) generation of 2D-variable-radii Poisson-disk samplings on each individual polygon using
algorithm 1 below, (4) construct a conforming Deluanay triangulation as previously described,
(5) merge individual fracture meshes into a sampling on the original DEN, removing conflicting
nodes along intersections, (6) generating a conforming 3D variable radii Poisson-disk sampling
of the surrounding matrix of the DFN using the 2D samplings as seed according to Algorithm
3, (7) triangulate sampling, identify low-quality tetrahedra and remove 2 of their nodes that
are not located on the original DFN, (8) repeat steps 5 and 6 with the remaining nodes
as seed until no more low-quality tetrahedra remain [22]. Replacing step (8) with more
traditional ways of sliver-removal like perturbation [67] or exudation [11] can break the empty

disk property of the sampling.
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Notation for Pseudocodes:

Input:
« D3 C R3:

« DFN C D3

«FCR?:
(1)

1
° ql,m and QZ(,n)l:

cubical domain (x)
generated by DFNWorks (%)
[-th fracture of the DFN

endpoints of intersection between fractures F; and F,

User defined parameters:

o H/2:
o [
o IR
o A:
o k:

minimal distance between nodes

HF is range of constant density around intersections
ARH + H/2 is maximal distance between nodes
max. slope of inhibition radius

number of concurrently sampled candidates

Additional notation:

e G: square cells covering F; with diam(g) < H/2 for all g € G.

o p(x): as defined in equation (2.5)(2D) or (2.6) (3D)

or(X,y): inhibition radius min(p(x), p(y))

e R(x,y): coverage radius

«C(x) € G: grid cell containing the point z.

e Nt(x) : {9 € G : dist(C(x),9) < p(x)}: cells that can contain points y with
x —yl <r(x,9)

o« N~ (x): {9 € G : diam(g U C(x)) < f%)x . cells, where for all their points y
x =yl <r(xy)

e Goce gX N~ (x): cells on which X is already maximal.

« T(X): Delaunay triangulation of X (x)

Output:

e X : Poisson-disk sampling on the [-th fracture

(%): 3D only
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Algorithm 1 2D Poisson-disk sampling

1: Initializing:

22 X CF > Generate a 1D Poisson-disk sampling with R(x,y) < \/%((’;’}:)L)
3: along boundary ¢ F; as seed.
4: for x € X do

5: Goce  Goee UN™(x) > Initialize occupied cells
6: end for

7: Sampling:

8 i+ 1 > Start sampling at first accepted node.
9: N «+ | X]| > Will increase as more nodes are accepted
10: while : < N do

11: repeat

12: for j € {1,...,k} do

13: p; € Iy > Generate k new candidate nodes on the annulus around x;
14: if C(p;) € Goce then

15: reject p; > Cell already blocked by existing node’s inhibtion radius
16: else

17: for y € N*(p;) do

18: if |p; —y| <r(p;,y) then

19: reject p; > Empty disk property violated
20: end if

21: end for

22: end if

23: if p, was not rejected then

24: X +— X U{p;} > Accept p; and add it to the sampling
25: Goce & Goce UN™(p;) > Update occupied cells
26: N+ N+1 > Ensures sampling around newly accepted nodes
27: end if

28: end for

29: until All k£ of the p; are rejected
30: 141+ 1 > Start sampling around next accepted node
31: end while > Terminate here or start resampling
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Continuation of Algorithm 1 (2D Resampling)

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:

Resampling:(optional: algorithm terminates, if no resampling is required.)
for C' € G\ Gy do
peC > Generate a random candidate on each cell
fory € N*(p) do
if [p —y| <r(p,y) then
reject p > Empty disk property violated
end if
end for
if p was not rejected then
X + XU{p} > Accept p and add it to the sampling
Goce ¢ Goce UN(P) > Update occupied cells
N+ N+1
end if
end for

Rerun algorithm again from line 10 (i is not reset.)

Algorithm 3 3D Poisson-disk sampling + Resampling

1:

2

Initializing:

. X C D? > Use Algorithm 1 to generate a Poisson-disk sampling on § D? and the DFN by

using Algorithm 1 (remove conflicting node, when merging samplings.)
for x € X do

Goce  Goee UN™(x) > Initialize occupied cells
end for
Sampling:
The sampling process in 3D works exactly like in 2D with the two only difference being
the following:

o New candidates are generated on a spherical shell instead on an annulus
« A candidate p ¢ 6D? is rejected if dist(p,dD?) < p(p)/2

8: Resampling: (optional: algorithm terminates, if no resampling is required.)

10:
11:
12:

13:
14:
15:
16:

repeat
for T'e T(X) do
if T is a sliver then
X « X\ {x,y}, where x,y € T are 2 random nodes not contained in the
boundary or the DFN
> Minimal distance of nodes to DFN and boundary assures, that this is possible.
end if
end for
Rerun algorithm again from line 6
until 7 (X) contains no more slivers.
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2.6 Results

The following sections will present and discuss numerical results in 2D and 3D.

2.6.1 Two-dimensional Examples

Figure 2.4 shows the triangulation of a variable radius sampling on a simple fracture with 3
intersections. Triangles are colored by their maximal edge length showing how the triangle
size increases as we move further away from the intersections.

In Figure 2.5, we depict the triangulation of a constant-radius sampling on that same
fracture, put back together into the original DFN it originated from. This process does not
influence the overall triangulation quality unless the fractures themselves intersect in an angle
smaller than the angles of triangles in the triangulation.

We show an example from a slightly bigger DFN combining both variable radii Poisson-
disk sampling and the reassembly into its original form in Figure . The network contains 25
fractures whose radii are generated from an exponential distribution with decay exponent of
0.3. There are up to eight intersections on each fracture, but note this is not a constraint
of generation or the sampling technique. The parameters of the inhibition radius are set to
H=01A=0.1F=1and R = 40.

The high quality of this particular triangulation is showcased in the histograms in Figure
2.7. Depicted are the distribution of minimal angles (a), maximal angles and the aspect ratios
of the triangulation. We see one triangle each with 25° and 26° respectively as minimal angles
with all other minimal angles being greater than 27°. The theoretical minimum angle in a
maximal Poisson-disk sampling with Lipschitz constant A = 0.1 is 27.04°. The majority of
minimal angles is significantly better still. In terms of the maximal angle, we can observe very
few triangles with angles worse than 110° and none worse than 120°. The greatest maximal
angle theoretically possible in a maximal Poisson-disk sampling with this Lipschitz-constant
would be 125.92°. The vast majority of aspect ratios is greater than 0.8 with only a marginal

number of triangles having an aspect ratio of less than 0.6 and none below 0.47.
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Figure 2.4: Triangulation of variable radii Poisson-disk sampling on fracture with three
intersections. (H=0.01, R=40, A=0.1, F=1) Triangles colored according to their maximal
edge length. The lines of intersection are shown as spheres.  (In text mentions: p.29)

Figure 2.5: Triangulation of a regular Poisson-disk sampling reassembled into the original
DFN. (In text mentions: p.29), (In text mentions: p.32)
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2.6.2 Run Time Analysis

We show an analysis of the run time and quality of the sampling on a DFN for varying
sample sizes, variations of the parameter k, and different numbers of resampling attempts.
All these data points were generated on the same DFN. Different node numbers were achieved
by continuously changing the parameter H, the minimal allowed distance between nodes.
All data points are from independent samplings. The plot in Figure 2.8 shows the run time
prior to resampling process against the number of nodes sampled up to that point. The
color corresponds to the value of the parameter k, which controls the number of concurrent
samples. We see an increase in run time with increasing k, as expected. The run times for
samples with the same k are positioned along straight lines of slope one, indicating a linear
dependence of the total run time and the number of nodes sampled. The red lines in the plot
have a slope of 1 to help visualize this. Figure 2.9 shows the relation between the parameter
k and the run time. Colors correspond to different numbers of nodes. As already established,
the run time increases linearly with the number of nodes sampled. The run time in terms
of k even exhibits a slightly sublinear behavior. The linear fit (black) of the data in this
log-log-plot has a slope of 0.7(9) +0.00(7). While this fitting error of ~ 9% is not insignificant
it can also clearly be seen by comparing the data to the two lines of slope 1 (red) in the plot,

that the run time does not increase more than linearly with k.

Figure 2.10 depicts a comparison of runtime between our implementation of [14] or [9] for
variable-radii sampling and the same implementation with our adaptation to use the grid
not only to find closeby nodes, but also directly reject candidates. Data points generated by
our adapted algorithm are represented by a filled circle, whereas data points generated by
the original algorithm are shown by empty squares. All data points are colored depending
on k. We can see our algorithm out performs the original for every pair of data points.
This advantage increases with growing k£, which makes sense as there are more rejected
candidates the greater k is and our adapted version can handle rejection faster since it does
not have to calculate the distance. For £ = 5 the speed difference between the algorithms is

slightly less than a factor of 2, whereas for £ = 160 the advantage grows to about an order
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of magnitude. Some comparisons to the sampling algorithm used in DFNWORKS [33] prior
to this implementation are shown in table 2.1. This original implementation uses a Rivara
refinement algorithm to generate the nodes of the mesh.

The speedup in run time is presented in Table 2.1. We consider three different DFN
to characterize the difference between the methods. The first is the deterministic network
of four ellipses shown in Fig. 2.5. The second is the network with fractures sampled from
an exponential distribution containing 25 fractures shown in Fig. 2.6. The final network is
composed of a single family of disc shaped fractures whose fracture lengths are sampled from
a truncated powerlaw with exponent 1.8, minimum length 1 m, maximum length 25 m within
a cubic domain wide sides of length 100 m. There are 8417 fractures in this network. In the
first two examples, the mesh was run on a MacBook Pro laptop with 8 2.9 GHz Intel Core 19
processors and 32GB of RAM. The third example was run on a linux server with 64 AMD
Opteron(TM) Processor 6272 (1469.697 MHz) and 252GB of RAM. The mesh resolution and
setup were consistent between the methods. In all cases, the Poisson-Disk method was faster
than the iterative method, and appears to improve in speed-up with number of fractures.
However, the difference in network properties also plays a role in the speedup, a feature that

we do not explore in this study.

2.6.3 Quality and resampling

The maximality of our samples correlates to a high degree to the choice of k, but also to
the number of times the resampling algorithm is run. Depicted in Figure 2.11 are the total
number of nodes sampled after a different number of resamplings. First we can see that the
density of nodes grows with the parameter k. This growth starts out fast for small £ and
while not entirely ceasing to increase, slows down notably for higher k. (Note log-scale on x-
axis.) On the lower end of the k scale, resampling increases the node density significantly,
whereas there is barely any difference for higher £ > 100. The first resampling is particularly
effective, whereas the difference between each resampling decreases afterwards. Given that
resampling does not take more time then the original sampling process, this turns into an
interesting trade-off between higher k£ and more repetitions of the resampling that overall

can yield higher performance. A run at k = 5 with few repetition for example, results in a
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Figure 2.6: Triangulation of a variable radii Poisson-disk sampling reassembled into original
DFN. The network contains 25 fractures whose radii are generated from an exponential
distribution with decay exponent of 0.3. Parameters used in the sampled: H = 0.1,R =
40,A = 0.1,F = 1. The mesh contains 23195 nodes and 47367 triangles. The minimal angle
is > 25°, maximal angle < 120°, and all aspect ratios are > 0.47. (In text mentions:

pp-29,32)

Table 2.1: Comparison of run time between previous iterative method with presented Poisson
Disk method for mesh generation. In all cases the new method outperforms the iterative

method.

(In text mentions: pp.32,32)

.. Deterministic | Exponential | Truncated
DEN Description Ellipses Disl?cribution Power-law
Number of Fractures 4 25 8417
Mesh Resolution Uniform Variable Variable
Number of Processors 4 8 32
Iterative - Run Time 10.64 s 57.23 s 47.47 m
Poisson-Disk - Run Time 4.46 s 9.91 s 6.47 m
Speed-up 2.4 5.8 7.8
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Figure 2.7: Histograms of selected quality measures of the triangulation of variable radii
Poisson-disk sampling on a fracture with three intersections. (H=0.01, R=40, A=0.1, F=1).
(a): minimal angle (> 25°), (b): max angle (< 120°), (c): aspect ratio (> 0.47) (In text
mentions: p.29)
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Figure 2.9: Log-log-plot of run time of Poisson-disk sampling algorithm in dependency of
the number of concurrently sampled nodes k prior to the resampling process. Data points
generated over the same DFN, different point densities generated by changing the minimal
inhibition radius % between every pair of nodes. Data points are colored depending on the
total number of nodes sampled. Other parameters are set to A = 0.1, R =40, F = 1. Linear
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density comparable to a run with more than 10 times higher & without resampling, while
being significantly faster overall. Similar conclusions can be reached when looking at the
quality of resulting triangulations rather than just the density of the Poisson-disk sampling.

Figure 2.12 shows the smallest minimal angle in a triangulation of our sampling for
variable k and different numbers of resampling attempts. We can see for k Z 80 this angle
appears to be at around 25° independently of the number of repetitions. The theoretical
bound for a maximal Poisson-disk sampling (with r(x,y) = R(x,y)) for the settings used to
generate these data points would be 27.04°. Solving the the angle bounds from Lemma 2.2 for
e shows us that in this sampling R(x,y) < (140.1)r(x,y). Given the statistical nature of the
algorithm and the fact that identical inhibition and coverage radii are not quite guaranteed
these results can be considered very good. While the quality of triangulations for smaller &
without resampling is significantly lower, it is noteworthy that just a single repetition fixes
this issue and yields triangulations with qualities on par with those for even significantly
higher k. This allows the algorithm to run at single or low double digit k, perform a single
resampling and generate a triangulation just as good as higher k£ would have produced in

multitudes of the time.

2.6.4 Three-Dimensional Example

While the majority of our work was aimed at optimizing the 2D sampling on a DFN, we will
conclude with an example where these 2D samplings are combined with a 3D sampling of the
surrounding matrix to showcase that it can be used to produce high quality triangulations in
this case as well. Triangulated output of the 3D algorithm can be seen in Figure 2.14. The
tetradedra are colored according to their maximal edge length to show how the point density
is adapted with the distance to the closest fracture.

Finally, the histograms in Figure 2.13 show the distribution of quality measures of the
tetrahedra in the triangulation depicted in Figure 2.14. For this run, tetrahedra with either a
dihedral angle of less than 8° or an aspect ratio of less than 0.2 were discarded before the
sampling algorithm was restarted. The first histogram depicts the distribution of the minimal
dihedral angle of each tetrahedron. As expected no dihedral angle below 8° remains, while the

vast majority exceeds values of 30°. Histogram (b) shows that despite not optimizing with
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respect to the maximal dihedral angle none of these angles exceed 165°. Histogram (c) shows
a sharp cut-off at 0.2 in the distribution of aspect ratios indicating that the aspect ratio is
likely to have been the driving factor for a majority of the resamplings. The example shown
ran through a sliver-removal and resampling process 17 times to obtain its triangulation
quality. In each of these steps a total of 200 or less out of approximately 50000 nodes
were removed before the resampling. This showcases both the scarcity of slivers in samples
generated through Algorithm 3, as well as that the vertices of these slivers can successfully

be removed and replaced in a way that does not give rise to new slivers.

2.7 Conclusions

We considered 2 algorithms that successfully generate variable-radii Poisson-disk samples on
polygonal regions or networks of polygons and the surrounding space they are embedded in.

Our experiments suggest that mesh quality is comparable in the method previously used
in DFNWORKS and the Poisson disk method we feature in this study, however, our algorithm
produces comparable quality meshes in a significantly shorter time.

In our method high quality meshing results through the additional measures introduced
to guarantee a significant degree of maximality. It is worth noting that maximality is reached
for a coverage radius just slightly larger than the inhibition radius. Triangulations of these
samplings show a quality almost matching theoretical quality bounds for maximal Poisson-
disk samplings, in which coverage and inhibition radii coincide. Our key contributions are

summarized as:

1. our algorithm is significantly faster than the previous conforming variable mesh strategies

2. for the fracture networks we achieved mesh quality only marginally worse than what is

theoretically possible,

3. for the volume meshing, slivers can be removed entirely from the domain within certain

bounds

It is worthwhile mentioning that the described algorithms are not only fast, but also

simple to run in a parallel fashion, further improving the overall runtime. Given a DFN, the
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2D-sampling can parallelized by working on each fracture on a different processor. Based on
the grid structure used to accept and reject candidates, both 2D and 3D can also be further
parallelized by dividing their domain into several pieces, that can be sampled individually on
different processors, while needing to communicate only cell information on the boundaries of
the split domains. Once these point distributions are produced, however, the all must reside

on a single processor to connect them into a Delaunay mesh.
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Figure 2.12: Smallest minimal angle of the triangulation of Poisson-disk samplings in
dependence of k£ colored by the number of resamplings. Data points generated over the same
DFN with fixed minimal inhibition radius. Other parameters are set to A = 0.1, R = 40, F' = 1.
(In text mentions: p.37)
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Figure 2.13: Histograms of selected quality measures of the triangulation of variable radii
Poisson-disk sampling on DFN and its surrounding matrix. (H=0.01, R=40,A=0.1,F=1). (a):
minimal angle (> 8°), (b): max angle (< 165°), (c): aspect ratio (> 0.2) (In text mentions:
p.37)
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Figure 2.14: (Left) Triangulation of variable radii Poisson-disk sampling of DFN and its
surrounding region. (Right) Close up of the conforming mesh. (H=0.25, R=100, A=0.125,
F=1). Tetrahedra colored according to their maximal edge length. (In text mentions:
pp.37,37)
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Chapter 3

A Hybrid Monte Carlo, Discontinuous
Galerkin method for linear kinetic

transport equations
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3.1 Disclosure

This chapter is, up to formatting identical to the preprint of the same name [23]. The
manuscript is collaborative work with Cory D. Hauck and Ryan G. McClarren. At the time
this disseration is written the article has been submitted to the Journal of computational
Physics and is under review. A preprint is available under https://doi.org/10.48550/
arXiv.2312.04217. The ideas and results presented build on previous work by Cory D.
Hauck and Ryan G. McClarren. Ideas and theoretical results newly presented in this paper
were worked out by Johannes Krotz under their guidance. Numerical experiments presented
were executed by Johannes Krotz using software implemented in Matlab also by Johannes

Krotz. All three cowrote and edited the paper together.

3.2 Abstract

We present a hybrid method for time-dependent particle transport problems that combines
Monte Carlo (MC) estimation with deterministic solutions based on discrete ordinates. For
spatial discretizations, the MC algorithm computes a piecewise constant solution and the
discrete ordinates uses bilinear discontinuous finite elements. From the hybridization of
the problem, the resulting problem solved by Monte Carlo is scattering free, resulting in a
simple, efficient solution procedure. Between time steps, we use a projection approach to
“relabel” collided particles as uncollided particles. From a series of standard 2-D Cartesian
test problems we observe that our hybrid method has improved accuracy and reduction
in computational complexity of approximately an order of magnitude relative to standard

discrete ordinates solutions.

3.3 Introduction

Numerical methods for kinetic transport equations are commonly divided into two classes:
deterministic and Monte Carlo. Each of these approaches has strengths and weaknesses that

complement the other.
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Deterministic methods [25] directly discretize phase space (physical space, direction of
flight, particle energy) as well as time, in the time-dependent setting. For this large seven-
dimensional space (three for physical space, two for direction of flight, one for energy, and one
for time), it is difficult to construct high resolution solutions for general problems. Indeed,
the number of operations and the memory footprint required for deterministic solvers can be
a challenge, even for leadership-class computers.

Monte Carlo methods [35], on the other hand, use sampling techniques to simulate particle
transport processes. In its most basic form, the Monte-Carlo procedure is a computational
analog of the actual physical processes being simulated: particles are sampled from sources
and boundary conditions, then tracked as they stream through the domain, and along the
way undergo scattering or absorption interactions with the material medium. As the particle
traverses the physical domain, it contributes to integrated quantities of interest such as
particle density or net fluence through a surface. For linear problems, the central limit
theorem implies that the Monte Carlo solution is exact in the limit of an infinite number
of samples [35]. Unlike deterministic methods, Monte Carlo methods are easy to extend to
complicated 3-D geometries and can handle physical processes (such as particle interactions
with the background material) in a continuous manner. Nevertheless, the uncertainty in
Monte Carlo methods, as expressed in the standard deviation of an estimate, scales like
N-12_ where N is the number of sample particles. Additionally, Monte Carlo methods
are not well-suited for obtaining uniform spatial estimates due to the difficulty of getting
sufficient samples in every region of the physical domain. Moreover, for nonlinear problems
such as thermal radiative transfer, the Monte Carlo approach loses some of its attractive
properties. For example the discretization of material temperature, to which the particles
are coupled, means that an exact solution is not obtained in the limit of infinite samples
[44, 12, 27]. Nevertheless, producing efficient, accurate Monte Carlo calculations is an active
area of research [34, 36].

Hybrid methods have been developed to harmonize the benefits of Monte Carlo and
deterministic methods while minimizing their respective drawbacks. For steady-state nuclear
reactor problems, methods such as COMET [28, 45] use local Monte Carlo calculations

to estimate properties of solutions in macroscopic regions of the problem and then use a

o4



deterministic procedure to couple these regions together. Other work has considered weight
windows and other biasing techniques [38, 6, 7, 39, 29] wherein deterministic solutions are
used to modify the flight of particles in Monte Carlo calculations so that computational
effort is spent more efficiently. High-order low-order (HOLO) schemes [30, 43, 31] have
been developed in which Monte Carlo is used to compute a closure term for a low-order,
moment-based deterministic calculation.

This work presents a deterministic-Monte Carlo hybrid method for time-dependent
problems based on the physics of particle transport. Previous work [21, 9, 10, 22, 41] has
shown that treating particles from the beginning of a step to their first collision with a
high-resolution discretization in angle, and treating the particles after they scatter with a
low-resolution method can give efficient and accurate numerical calculations. Because the
scattering process relaxes particles towards a weakly anisotropic angular distribution, one
can combine methods that are appropriate for particle streaming for the uncollided particles
during a time step with methods that are suitable for weakly anisotropic angular distributions.
In previous work, deterministic methods with a large number of angular degrees of freedom
were used for the uncollided particles while low-resolution deterministic methods were used
for the collided particles. Moreover, it has been shown [41] that the benefits of this splitting
approach extend to multigroup problems by applying a coarser energy and angle discretization
to the collided particles.

Despite the benefits of deterministic hybrid methods, solutions still require a large number
of degrees of freedom for problems with large streaming paths. A natural strategy to address
this challenge, which for steady-state problems was first proposed in [3], is to use Monte Carlo
for the uncollided particles. Indeed, in many respects this is the ideal situation for a Monte
Carlo approach. During a time step, particles are tracked through the computational domain
and a non-analog estimator of the solution known as implicit capture is employed, thereby
avoiding the need to consider collisions at all. Thus the calculation of the contribution to
the solution from uncollided particles is essentially a ray tracing algorithm, which has many
efficient implementations on modern computing hardware [2].

The hybrid method considered here uses Monte Carlo to compute the contribution to the

solution from uncollided particles and an efficient deterministic calculation for the collided

55



particles. A key advancement for extending the original steady-state formulation to time-
dependent problems is a remapping step that resamples particles from the deterministic
collided solution back into the uncollided component. This procedure is critical since,
otherwise, the number of uncollided particles will decay exponentially and the hybrid solution
will relax to a low-resolution, deterministic approximation of the collided solution [21]. We find
that the hybrid approach leads to more accurate solutions obtained using lower computational
complexity than pure deterministic calculations. An additional benefit of the hybrid is
that, away from domain boundaries, it reduces to the uncollided discretization, which unlike
standard Monte-Carlo methods, captures the diffusion limit in optically thick regimes [21].
The remainder of the paper is organized as follows. In Section 2, we introduce the hybrid
method in the context of a single-group transport equation that is independent of particle
energy. We also summarize the numerical methods used for the uncollided and collided
components of the hybrid. In Section 3, we present numerical results for several standard
test problems in a reduced two-dimensional geometry in physical space. In Section 4, we
summarize findings and present directions for future work. A short appendix describes the

Monte Carlo implementation of a boundary for one of the test problems.

3.4 Basics of the Hybrid Method

3.4.1 Transport equation

Let X C R? be a spatial domain with Lipschitz boundary and let S? be the unit sphere in
R3. Let ¥ = WU(x, £2,t) be the angular flux depending on the position = = (z,y,2) € X,
the direction of flight 2 € S? and time ¢ > 0. We assume that ¥ is governed by the linear

transport equation

Os

1
fatm+9-v$qf+atxp:47<\1/>+c2, xeX, Qe§’ t>0, (3.1)
C ™

where oy = oy(x), 05 = os(x) and 0, = oy — 05 are the total, scattering, and absorption

cross-sections of the material, respectively; @ = Q(x, 2,t) is a known particle source; and
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angle brackets denote integration over the unit sphere:

(W) = [ UdQ. (3.2)
/

The constant ¢ > 0 is the particle speed; we assume that ¢ = 1 for the remainder of this work.

The transport equation (3.1) is equipped with initial conditions
U(x,Q,0) =Vo(x, ), zcX, NQc§% (3.3)
and boundary condition
U(x, Q,t) = G(x, Q1) x€0X, Q-n(x)<0, (3.4)

where ¥y and G are known and n(x) is the unit outward normal at & € 0X.

3.4.2 The hybrid method

The hybrid method is based on a first collision source splitting [3]. Let ¥ = W, 4+ ., where

the uncollided flux W, and the collided flux V. satisfy the following system of equations

U, + Q- Vo0, + 0,0, = Q, (3.5a)
80, + Q- VU, + 0,0, — Z? (W) + (1)) (3.5b)

Due to the linearity of (3.1), the splitting in (3.5) is exact; that is, if ¥, and U, solve (3.5a)
and (3.5b), respectively, then ¥, + W, solves (3.1). In practice, however, (3.5a) and (3.5b)
are solved at different resolutions or even with different methods. Typically (3.5a) is solved
with a method that has high resolution in angle, and because (3.5a) has no coupling in angle,
it is easier to solve than (3.1) and also easy to solve in parallel. Meanwhile (3.5b) inherits
the angular coupling in (3.1), but typically requires less angular resolution.

Since (3.5a) has no scattering source, particle densities will be transferred into the collided

flux at an exponential rate, thus making the accuracy at which (3.5b) is solved the driving
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factor in the overall accuracy. This effect can be mitigated by abusing the autonomous nature
of the equations and periodically relabelling the collided flux as uncollided at every time step.
To describe the implementation of the hybrid in more detail, let 7 be an operator such

that
ult] = T(t,t',s,0,0, A\, As) (3.6)

where u[t](x, Q) := u(x, Q, ), satisfies

8tu—|—Q-un+)\tu:4—s<u)—|—s, zeX, QeS? t>7, (3.7a)
7r

u(z, Q,t") = vz, Q) reX, Qe§? (3.7b)
u(x, 2, t) = b(x, Q1) xeodX, Q-n(x)<0, t>t. (3.7

with source s = s(x,€2,t). Using the operator T, we can write

‘Il[tnqu] = 7-<tn+17tn7Q?qj[tn]vGaa‘mUSL (38)
\I]u[thrl] = T<tn+17 tna Qua \Ij[tn]a G7 Ot, O)a Qu = Q (39)
\Ilc[tn—l—l] = T(tn—i-latnaQCaOa 070tvgs)7 QC = Z%;_<\Iju> (31())

We simulate the system (3.5) using a Monte Carlo method for the uncollided equation (3.5a)

and a deterministic discretization of the collided equation (3.5b). Let

TMC(tatlasavMCaba )\tv)\s;Np) (311)

be the Monte Carlo approximation to (3.7) given a particle representation vy of v and using
N, pseudo-particles to represent the distribution of particles in phase space introduced by

the source s over the internal (¢,¢). Similarly,

Tsn(t,t',8,v,b, A, As; N, Ny) (3.12)

denote the Sy-DG approximation of (3.7) using a level N set of ordinates, N, spatial cells

per dimension with Q; elements, and a backward Euler time discretization to get from ¢’ to ¢.
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(The Monte Carlo method and Sy-DG method are presented in more detail below.) Then

given N,,, N, and N,, and a Monte Carlo approximation ¢" of W(t,), let

U = Tt b Qu ™, G, on 0 N,), Qu=Q (3.13)
U = Tonturt tns Qe 0,0,00, 0 N, No), Qe = (e (3.14)
RUT = oty @ 0.0,000:,), Q= Qo+ (h)gy  (315)
O = g Ry (3.16)

where R is the relabeling operator and (-),;- and (-)qy denote approximation of the angular
integral over S with the respective method. When equations (3.13) through (3.15) are solved
sequentially, "' is a Monte Carlo approximation of (3.5a) with initial condition ¥™ and
R+ is a Monte Carlo approximation of (3.5b) with zero initial condition. Thus ¢"*! is a

Monte Carlo approximation of (3.1) with initial condition .

3.4.3 Discrete ordinate-discontinuous Galerkin

The discrete ordinates (Sy) method [5] approximates (3.7) by replacing the angular integral
(u) by a discrete quadrature and then solving the resulting equation for the angles in the
quadrature. This procedure yields a system of equations that depend only on space and time

and can be further discretized by a variety of methods. Let
{9, (]]V:“l and {wq}é\g’l (3.17)

be the angles and associated weights of the Sy quadrature, where N = N (/N) depends on
the specific type of quadrature set being used. After discretizing in angle and applying an

implicit Euler time discretization, the following semi-discrete system is obtained for each

59



qge{l,...,No}tand n € {0,1,2,...},

At \a
upt(x) = bt (), xedX,, (3.18b)

q

1 Ay 2
(ugt —up) + Q- Voup™ + Nuptt = e st e X, (3.18a)
r=1

where X = {z € X : Q,-n(z) < 0}, V) (x) = b(x,Qy, t,), sp(x) = s(x,82,1,), and

n

Uq

(x) =~ u(x, 4, t,) is the approximation on the temporal and angular grid. After reassigning

1
g ultt, Sq < st A — A + N and by + b, (3.19)

the discretization in (3.18a) can be written in the equivalent steady-state form

Q- Vaug + Mug = A + 54, relX (3.20a)
ug(x) = by(x), x € 0X, (3.20b)
where w = (uy,...,ung) ", = ﬁ 3wty

We discretize (3.20a) in physical space with a discontinuous Galerkin method and upwind
numerical fluxes. The method by now is fairly standard (see for example [9, 20]) and
is often used because of its accuracy in scattering-dominated regimes relative to upwind
finite-difference and finite-volume methods [1, 24, 33, 19]. Because the DG method is well-
known, we summarize it only briefly for the case of a two-dimensional Cartesian mesh with
rectangular cells, which is sufficient for all of the numerical tests in Section 3.5. Let X be
divided into open sets C; ; that are squares with side lengths h centered at (z;,y;), and let

Vi = {v € L*(X) :v|g, € Qi}. The goal will be to find an approximation of the weak

solution of equation (3.20a); that is, find w" = (uf,... u} )" € [Vi]® := V}, x - -+ XV}, such
Ng times
that

i) (o h ok i)k oy A q(d) (kR 7)) (ah R (i.4) (1 h i) (0
Aé])(u v)+77(§ J)(uq,v)—/\/lq](u M) + R J)(u,vq)+8q](v)+6( D) (3.21)

q’7q q q’q q q q
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for all i,5 € {1,..., Nz}, ¢ € {1,..., N}, and v" € V;. Here

AE] )(ug‘,v(];) /(Qq : vaf;)ugdm + A / v;‘u;‘dm, (3.22)
C@j Ci,j
Pélj)(uq, v(};) = / (€, - n)vg’_vg’_ds(a:), ij’j)(ufl‘,vg) = / (€, - n)vg’_ug’+ds(:c),
(9Ci5)d (0Ci,5)q
(3.23)
REGI) (wh " vy) = As /uhvhdw S(”( ") = /sqv(};dm, B(gi’j)(v(’;): / bevlds(x),
Cz,j Ci,j C,-,jﬂan_
(3.24)

vE(x) = lim " (x £ 9n), and (0C;;)y = {= € 0C;; : £Q, - m(x) > 0} (3.25)

d 90+ ¢

We construct u" = (ul,... u%)" as follows: For each i,j € {1,...,N,} and q € {1, ..., No},
let

u;‘(a:) = > (”)QS(” (z,v), x € Cyj, (3.26)

koo <1

o = P,ﬂ( h;;”)Pk (yh_/2%> (3.27)

and P is the usual Legendre polynomial of degree k on ¢ € [—1,1] with normalization

where k = (k1, ko),

f,l Py, (&) Py, (&)dE = ﬁdh ks - Using this representation for u”, we derive the following

linear system for the coefficients a ) from equation (3.21): For each I such that |l| <1,

S (AL + PG ol = S (Ml + R al)) + 857 + By, (3.28)

koo <1 koo <1

Ay = APG 0 B =PI o) M = ME O 6
(3.29)

B = Bid(gf), 8% = 8E(¢f)),  RYY) = RED(epD, o)) (3.30)
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and, given the components n = (n,, n,) of the outward normal, the indices i*, j* are given by
i"(x) =i+n,(x) and j*(x)=j+n,(x). (3.31)

To improve readability, we rewrite equation (3.28) as a matrix equation with respect to the

indices k and I:

The organization of the operators in (3.32) reflects a standard solution strategy combining
source iteration and sweeping. In source iteration, &™) is lagged; that is, given an iteration

index ¢:

a((;ajae'i'l) — (A((;:.]) + Pq(lvj)) (R(Z,])&(Z,j,f) + Mq(luj)a((; »J 7Z+1) + B(gzvj) -+ S[gzvj)) , (3333)

N
QD) = 3 g, D), (3.33b)

q=1

Sweeping refers to process solving of (3.33) cell-by-cell: for each g, cells can be ordered such
that a{"7"*+1) is known, prior to solving for a{***1). The details of this procedure are given

in Algorithm 4.

3.4.4 Monte Carlo

In this section, we describe the Monte Carlo method used to compute the solution to (3.7)

for the pure absorption problem when \; = A, (i.e. no scattering):

O+ Q- Vau+ \u = s, rcX, QcS? t>0, (3.34a)
u(z, Q,0) = v(x, Q) zeX, Qe$? (3.34b)
u(x, Q,t) = b(x,Q,t) xedX, Q-n(x)<0, t>0. (3.34c)
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The Monte Carlo method approximates the phase space distribution u using a finite set of

pseudo-particles:

u(z, Q1) = > we(t)d(x — x(1))6(Q — Qy), (3.35)

melt
where IT* is a set of pseudo-particles m with position z,(t), weight w,(t), and direction of
flight Q. II* will be defined more carefully below. A benefit of the hybrid is that scattering
processes, which can slow down the method significantly [13], do not need to be modeled in
(3.34).
The Monte Carlo implementation of (3.34) can be derived via a Green’s function

formulation for (3.34). Let G(z,y, $2,t,1) solve
G+ Q-V,G+ MG =0(x—1y)o(t —toy), (3.36)

with zero initial data and boundary conditions. Then

t

u(x, 2, 1) \ Gz, y,Q,t,t0)s(y, Q, to)dydty (3.37a)
o Jr
t
+ \ G(x,y,Q,t,t0)s,(y, Q, to)dydty (3.37b)
0 JRr
t
+ \ G(x,y, Q,t,t0)s(y, Q, to)dydty (3.37¢c)
0 JRr

solves (3.34), where s, s,, and s, are identically zero outside of the closure of X. The terms
s, and s, are provisional source terms designed such that (3.37b) solves (3.34) when s =0
and b = 0, while (3.37¢c) solves (3.34) when s = 0 and v = 0. The former is solved by setting
sp(x, Q1) = v(x,2)I(t). However, determining s, can be slightly more involved, and an
example that is used for numerical experiments in Section 3.5.3 is provided in the Appendix.
Once s, s,, and s, are known, all three terms can be treated identically. For simplicity, we

restrict our attention to (3.37a) below.
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For any t > to and any fixed €2, let X (t) = o+ (t —to)Q2. Then g(t) = G(X (), y,Q,t, 1)

solves
— = = —AX(#)g(t) + 6(X (t) — y)o(t — to) (3.38)
or, equivalently,
g(t) = ¢ I XL g, (3.39)
Setting & = X (t) in (3.39) gives
Gy, Dt 1) = ¢ hoMEEONEs 0y, (3.40)

Plugging (3.40) back into (3.37a) yields, after some manipulation,

t t
u(z, Q1) = /0 /R3 ¢ o At(mf(t*&)n)dgé(sc — (t—t0)Q — y)s(y, Q, to)dydty
t t
:/ o Jp METEOMAE QL Qo) dt
0
t t
= / e Jir ’\°(w_(t_£)ﬂ)dgs(:v —7Q,Q,t —T1)dT
0

t pr
= / eI M@=tV g — 7, Q, t — 7)dr
0

(3.41)

This representation of u(x,€2,t) can be interpreted as the density of particles that have
reached the location @ at time ¢ while moving in the direction 2. These particles are emitted
by the source s at time ¢t — 7 and location @& — t€2, and they carry a weight that decays
exponentially due to absorption.

The Monte Carlo approach can be understood as an approximation of u based on sampling

of pseudo-particles from the source s in (3.41). Let

$(2,2,t) = > wrd T )0(2— Q)0(t —tr) (3.42)

mell
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where 7 € II are pseudo-particles with weight w, > 0, position x, € X, and direction of
flight Q. € S? at ¢, > 0, such that 5(x, Q,t) approximates s(x,,t) for all £ > 0. Then for
any C' C X, any B C S?, and any time interval (¢,,%,,1), the representation of u in (3.41),

along with the approximation § gives

tn 1
/+ //u(w,ﬂ,t)dﬂdacdt
tn CJB
tn t T
~ [ / / / o~ Jo M=V (0 1 Q1 — 7V drdQdadt
tn C JBJO

tnt1 t T
_ [ / / / o= Jo Mlz—e)de S web(x— 7R — x:)6(Q — Qr)d(t — T — tr)dTdQdexdt
tn ¢ /B0 mell
tn+1 t—tr
— Z A + wwei 0 /\t(:ETrJrﬁﬂr)df]lC(wﬂ_ + (t . tﬂ)ﬂﬂ)ﬂ[o,t] (tﬂ—)ﬂB(Qﬂ)dt
Tell ™
tn+l
= Z /t wﬂ'(t)HC(mﬂ‘ + (t - tﬂ')Qﬂ')]l[O’t] (tﬂ-)]lB(Qﬂ)dt
Tell ” "

(3.43)

T N (6 )d

where w,(t) = wye” Jo ¢ and Wy (tr) = wy.

Note that with the identification @, (t) = @, + (t — t,)2, we can also identify IT* in (3.35)
as II' ={r eIl : t, < t}.

We will denote (3.43) as Tauc(tni1, tn, 0, As, Asy 5,05 NV,) as the Monte Carlo solution for
the case of the zero initial data and zero boundary data. A general Monte-Carlo solution can

be obtained as

TMC(tn-i-la tna S, v, b7 /\57 >\Sv Np) :TMC(tn—i-la t?"w s+ Sy, U, Oa )\57 /\S7 Np)

=Tvc(tns1,tn, s+ Sy + 55, 0,0, A, Ag; Np)
Numerically it is useful to realize that
It = e = {a(t, + At) s r € M U {m €112ty € (tn, tng)} (3.44)

where in an abuse of notation 7 (¢, + At) is a new particle with position z,(t + At), weight
we(t + At) and direction of flight Q, for some 7 € IT'» = II". Thus particles II"*! can be

obtained by updating the weight and position of particles in II" and sampling new particles
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with birth times in (¢,,t,41). From (3.43) we also obtain

el =3 [ w " () e (@ + (t— £)Q) Loy () dt (3.45)

mell in

With this formulation, particle weights w,(t) decrease exponentially at a rate proportional to
the absorption, given by A;. This approach is known as the implicit capture method. It avoids
the need to sample absorption times explicitly and, at the same time, reduces statistical noise
and simplifies the implementation [14, Page 168][26, Chapter 22].

The Monte Carlo simulation of (3.34) from t, to t,. is based on (3.43) and proceeds

according to the following steps:

1. Let P be a partition of X into disjoint cells C'. For each C' € P, calculate the total

weight W of new particles generated in C' by the source during the interval (¢,,,%,11):

Wwe = / /+/ x, 0, 1) dQdadt, (3.46)
At47r s2 Jt, * )

where At = "1 —¢" and let W = Y cp WE. Let N, be the input for the total number

of new particles to sample during the interval (¢,,¢,.1). Then for each C' € P, sample

N¢ = floor —C
w

p

(3.47)

particles and assign them each a weight w = W/N ¢ The total number of particles in
the system at this time is N"Jrl N"Jrl + > NC Each new particle p is assigned a
position x, sampled uniformly from C' and Zelirth time t"*! — 7., where 7, is sampled
uniformly from (0, At). Each particle p is also assigned an angle €2,. For isotropic
sources, €2, is sampled uniformly from S%. For non-isotropic sources, (such as the
boundary source for the holhraum problem in Section 3.5.3), the sampling distribution

must be consistent with the angular dependence. The particles, including their space,

angle, and time coordinates, are added to the current particle list.

2. Move each particle 7 in the current particle list from x, to z, + 7.2, and update

its weight to w, < w;(t,+1). The number of particles in the system will have to be
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adjusted accordingly. Reset its remaining time to 7, <— At. For each cell C' € P,

update the sum in (3.43) and (3.45) according the time spent in C' during the interval

(tnv thrl)'

3. To reduce computational effort and memory, at the end of each time step any particle
p with weight w, < wyy will be dropped with a probability of pi > 0. Here wyy > 0
is a user-defined parameter, called the ‘killing weight’, and piiy = (1 — wy/win). To
preserve the total mass in the system, any particle p with weight w < wyy that survives

this ‘Russian roulette’ [26, Chapter 22| will have its weight readjusted to w,/(1 — px)-

3.4.5 Pseudocode

The algorithms that we use for our numerical results are detailed in Algorithms 4-7. The
Sy method is given in Algorithm 4. The hybrid method is given in Algorithm 7. It requires
Algorithm 4 for the collided component and Algorithm 5 for the Monte Carlo update. A

listing of the notation used these algorithms is provided in Table 3.1.

3.5 Numerical Results

In this section, we compare simulation results from the Monte Carlo-Sy hybrid method to
those from a standard, monolithic Sy method. The goal is to demonstrate that the hybrid
method provides a more efficient approach. The Sy computations for the monolithic method
and for the collided component of the hybrid rely on product quadrature sets on the sphere
[40, 4].

We consider three well known test problems: the line source problem [17], the lattice
problem [8], and the linearized hohlraum problem [9, 8]. The specifications for each problem
are provided in the following subsections. They are all formulated in a geometry for which
0,V = 0. This means that they can be reduced to two dimensions in physical space and, by an
abuse of notation, we write W(x,€,t) = ¥(z,y,Q,t). A further consequence of the geometry
is that product quadrature on the sphere can be reduced to just the upper hemisphere, in

which case Nq = N2. The time step for each problem is tied to the grid resolution via
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Table 3.1: Pseudocode parameters (In text mentions: p.67)

User defined parameters

number of Cartesian cells along each dimension

Ng

N order of discrete ordinates

N, number of new particles (up to rounding)
generated from source

At time step
) tolerance of iteration
Wy Gauss-Legendre weights

Material parameters

Aty Aas Ag ‘ total, absorption and scattering crosssection

Additional notation

Al pED R M) B S | matrices defined in Section 3.4.3

q
UX) uniform distribution on set X.
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Algorithm 4 Sy-algorithm: Propagate solution from t; to tx11

Input: u",s, > coefficients of solution u’; from previous step and source
Require: ;\t, Aas A, > Material properties
Require: At, {Ci7j}zj~vle, {Q,, wq}f]\[:“1 > Discretization parameters
Require: ¢ S > Convergence tolerance

1 alt)(t,) such that ull(x) = ¥ agl}g)qﬁg’”(m) for x € C;
[Kloo<1
2 Sy ¢ Sq+ a;0(tn) > Initialize source
30 oy aylty) > Initialize coefficients
4: err =0+ 1
5. while err > 0 do
6: By — oy > Store old coefficients
Ng
7: Q4 ) Wwey
q=1
8: for g € {1,...,Nq} do
9: for (i,5) € {1, ..., N, }* do > Sweep through cells in direction €2,
> Update coefficients
11: end for
12: end for
13: err = max llay — Byll > Discrepancy between iterations

14: end while

15: return ! (z) = |k|z<1a;f;§>¢,9j>(m), (i) () = |kz<1a,(ci’j)¢§f’j)(m) for x € C
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Algorithm 5 MC-algorithm: Propagate solution form ¢; to 41
Input: 1" with v (2, Q) = ¥ w.d(x — x,)0(2 — Q)

mell
s(x, Q, 1) > previous particle distribution and source
Require: \;
Require: At, {C;;}; j , > Discretization parameters
Require: wyy > killing weight
1: for (i,5) € {1,...,N,}* do
tnt1

2: W ¢ :ﬁ [ [ Js(x,Q,t)dQdxdt
vJ tn Ci,j S2

3: end for
4 W3 W€ > Calculate total source
0]
5. for (i,7) € {1,...,N,}* do
Cij Wi N .

6 Ny < W”J > Number of particles on each cell

7: end for

8 Np > Npci‘j > number of new particles

i.j

9: w 4 NEP

10: for (i,7) with NI# >0 do > sample new particles from source
11: for k€ {1,..., N5} do

12: Generate new particle m with

13: x. ~U(C; ;) > Draw particle’s position
14: (Qy,Qy, Q) ~ m { [ s(x,,t)dxedt > Draw particle’s direction of

flight N

15: Qr + (Q,,Q,)

16: Wy < W > Assign particle weight
17: II* < II* U {7} > Add new particle to existing
18: end for

19: end for
20: for 7 € II' UII* do > Move particles
21: if 7 € II* then
22: Te — At > remaining time for particles from prev. step
23: else
24: randomly draw 7, ~ U([0, At]) > remaining time for particles
25: end if
26: T Tp+ T > Update particle’s position
27: for (i,7) with C;; N {xr +tQ, : t € [0, 7]} # 0 do > All cells intersected by

particle’s trajectory

28: ;4 Dij+we f77 exp (= i Aa(@p +H'Q,)dt) Lc, (@ +tQ)dt > Update &
29: end for
30: Wy < Weexp (— [o™ AT + 182,)dt) > Update particle weight
31: ifx, e X then
32: o« 1t u {r} > Remove particles that left domain

33: end if
34: end for 70




Continuation of Algorithm 5 (Russian Roulette)

1. for m € 1" with w,; < wyy do > Russian roulette

2: T~ U([O, 1])

3: if r > % then > Determine survival of particle

4: Hn—l—l — Hn—H \ {7T}

5: else

6: wy <— win > Update surviving particle’s weight to approx. preserve total mass

7 end if

8: end for

9: return 11" with «" ™ (z, Q)= ¥ 1 wed(x — x:)0(Q — Q) and (W), o (z) = (x)
rellnt

Algorithm 7 Hy;c g, -algorithm: Propagate solution from ¢ to x4
Input: II" with u™(x, Q) = X wyd(x — x,)0(2 — Q)
p

s(x, Q, 1) > previous particle distribution and source
Require: S\t, Aty Aas Ag, > Material properties
Require: At, {C; ; %":1, {Qq,wq}évz"l, N, > Discretization parameters
Require: §, wyy > Convergence tolerance and killing weight

1 I (u ), o MC(II™, s) > Monte Carlo for uncollided
2: for g € {1,..., No} do

3: Sq — APy > turn (ull '), o into source for S,
4: end for

5wt (ul Yoy < Sa(0, s,) > S, for collided
6: 8 < A((u Mgy + (Wi yc) > sources for Relabeling
7. Ug, (W) ye < MC(0, s) > Monte Carlo as relabeling
g I+« HLH_I Ullg

9: (U ) yio ¢ (U e + Uk e

H
@

return I, (u"t1), .

71



the ratio CFL = At/Az. For all calculations shown below, the iteration tolerance 0 (see
Algorithm 1) is set to 107%.1

For each problem, we assess the accuracy of the numerical solution and the efficiency
with which it is obtained. To quantify the accuracy we compare our results to a reference
solution. For the line source problem the reference is the semi-analytic solution from [18]; see
also [17]. For the other two test problems, the reference is a high-resolution hybrid solution
based solely on Sy discretization with a triangular-based quadrature referred to as Ty [37]
for both collided and uncollided component, combined with a DG discretization in space and
integral deferred correction in time [11].

Accuracy for the MC-Sy hybrid and the monolithic Sy method is measured in terms of
the relative L?-difference in the scalar flux ® = (¥) at a given final time tg,,. Given the

numerical solution ®,,,, and the reference ®..:

_ H(D — CI)refHLz

A= , (3.48)
‘ |(Dref‘ ‘Lz

where L?-norm is approximated by h? Y,  ®F; and @, ; is the average on the cell C; ;. Because
our implementation of the hybrid method and the Sy method are not run-time optimized,
we use a complexity measure which counts the number of times a particle is moved or a DG
unknown is updated in the course of a sweep. Let N¢ be the level of the quadruature for the

collided component of the hybrid. Then the complexity of the monolithic method is

T
Csy = 4 X Na X N? X N; X Y
T ) ) T 4
# of # of # of # of 4 of
Legendre ordi- cells source .
time
coefficients nates iterations
steps
(3.49a)

"While not shown here, we also tested several runs using 6 = 108, which leads to negligible improvements
in accuracy when compared to the results shown below.
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while the complexity of the hybrid is

T
Chybrid = (N + Ng) X At + Csne (3.49b)
T T 4 T
avg. # of avg. # 4 of time Sy
particles particles steps complexity
moved for moved in of collided
uncollided relabelling equation

For convenience, we set Ntot = (N, + Npg)# so that C = Ntot + Cgye. Ny is the

hybrid
sum of particles added to the system NV, and the average number of particles still in flight
from the previous time step Npyey, i.6. N, = Np + Nprey, While Ng is the number of particles

added in the relabeling, which we set to be Np = N,,.

3.5.1 The Line Source problem

In the line source problem, an initial pulse of uniformly distributed particles is emitted from
the line £ = {(z,y, z) : x = y = 0} into the surrounding domain X = R* which contains a
purely scattering material with o, = o = 1. Because the geometry of the domain and initial
condition are invariant in z, the spatial domain can be reduced to R?. In this two-dimensional
setting, the initial condition can be represented by an isotropic delta function ié (x,y), but
to reduce numerical artifacts, we use a mollified version of the initial condition:

_x2 + y2
26

1 1
Uo(z,y,Q,t) = 1r 2 P ( ) : ¢ =0.03. (3.50)

Meanwhile, the computational domain is restricted to the square [—1.5,1.5]* and equipped
with zero inflow boundary conditions.

We perform monolithic Sy and MC-Sy hybrid simulations at various spatial and angular
resolutions. The spatial domain is subdivided into equal N, x N, square cells with N, €
{51,101,201}. For the Sy-runs we let N € {4,8, 16, 32}, resulting in N = N? ordinates on
the northern hemisphere of S2. The collided part of the hybrid algorithm employs an Sy
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method with N € {4,8}. In the hybrid method the number of particles was also changed
between runs.

At time ¢ = 0 an initial pulse of IV, particles distributed according to (3.50) is added to
the system. Since the source term is zero, new particles are only added due to relabeling.
The number of particles newly inserted into the system is roughly N, per time step where
N, =10% and k € {2,3,4,5,6}.

Due to rounding and particles being dropped via Russian roulette, the exact number of
particles inserted into the system varies slightly. The killing weight is fixed at wyy; = 10717,
The CFL is also fixed at 0.5 across all runs. The reference solution is the semi-analytic
solution from [18]; see also [17].

Figure 3.1 depicts several approximations of the scalar flux ® at tg,, = 1, calculated using
the Sy method and the hybrid method. The solutions calculated using the Sy method clearly
show ray-effects that only get resolved after a significant increase in the angular resolution.
No such effects are seen in the hybrid solutions. The hybrid solutions do contain some noise,
as the particle count is relatively low, but they preserve the symmetry of the problem up to
a reasonable error. Unlike the Sy-method, the hybrid is able to capture the wave front of
unscattered particles travelling away from the center with speed 1.

Figure 3.2 shows Ls-errors of the numerical solutions in log scale; the same trends are
apparent. While the hybrid solutions mainly suffer from noise due to the stochastic nature of
the Monte Carlo method, the Sy method has strong ray-effects and struggles to capture the
analytic solution at the wave front.

A more systematic analysis of the numerical results is presented in Figure 3.3. This
plot shows the relative Lo-error A of various runs versus their respective computational
complexity C. For the hybrid method, increasing the angular resolution N in the collided
component yields a marginal improvement at best. However, changes in the particle number
N, for the uncollided component have a significant impact. For the Sy method, on the other
hand, increasing the angular resolution yields a significant improvement in the accuracy. For
smaller values of N, increasing the spatial resolution may actually increase the error. This is
especially apparent in Figure 3.3 for the S; and Sy results. For a fixed angular resolution,

additional spatial accuracy will begin to resolve the ray effect anomalies in the solution.
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Conversely, Sy results with lower spatial resolution benefit from error cancellation due to
the numerical diffusion smoothing ray effects. The hybrid may also have larger errors if the
particles per cell is too low.

Overall the hybrid method outperforms the monolithic Sy method. For example, the
hybrid error can match the most refined Sy calculation (N = 32) with a complexity that
is roughly 2-3 orders of magnitude smaller; compare Figures 3.2 (¢) and (d). In fact the
hybrid method can obtain an error with half the size with a complexity that is an order of
magnitude less. In general hybrid runs tend to be 3-4 times more accurate than their Sy

counterparts of similar complexity.

3.5.2 The Lattice problem

In the lattice problem, a checkerboard of highly absorbing material is embedded in a scattering
material with a central source. The layout of this problem along with its material parameters
can be found in Figure 3.4. The computational domain is a 7 x 7 rectangle with zero inflow
data at the boundaries. The center square (red) contains an isotropic particle source, while
the blue squares are pure absorbers. The red and white squares are purely scattering with
os = oy = 1. The initial condition is identically zero everywhere in the domain.

We perform Sy and hybrid runs with varying spatial and angular resolution. The spatial
domain is subdivided into equal N, x N, square cells with N, € {56,112,224}. For the
Sy-runs we use N € {4, 8,16, 32}, resulting in Ng = N? ordinates on the northern hemisphere
of §2. The collided part of the hybrid algorithm employs an Sy method with N € {4,8}. In
the hybrid method the number of particles is also changed between runs. The number of
particles newly inserted into the system every time step is roughly 2 x N, where N, = 10" for
k€ {2,3,4,5,6}. ? The killing weight is fixed at wyy = 1071, All runs are performed to a
final time of tg,, = 3.2 and the CFL is kept fixed at 25.6. The reference solution is a Sgg-S16
hybrid (meaning a Sog for the uncollided component and Sjg for the collided component)
using a Ty quadrature in angle, a third-order DG method in space on a 448 by 448 grid, and

a defect correction time integrator [10].

2The factor of 2 is because N,, particles are used for the uncollided equations (3.13) and N, particles are
used for the relabelling (3.15).
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0.45
0.4 (a) Reference (b) Si6: Ny = 101, (c) Sg2: Ng = 101,
A =27%, C =9.2x A =19%, C = 3.7x
0.35 | 109 1010
03
0.25 f
0.2 f
0.15 *
0.1
0.05
0
(d) Hucs,: N = (e) Humosg: Np = () Huveos,: Nz =
51, Niot = 5.9 x 101, Niot, = 2.3 x 201, Ntot = 9.0 x
107, A =19%, C = 109, A = 8%; C = 109, A = 5%, C =
8.0 x 107 2.5 x 10? 9.9 x 10?

Figure 3.1: Numerical approximation of the scalar flux ® for the line source problem at
tinal = 1 with CFL 0.5. Each numerical solution is characterized by a relative L? difference
A with respect to the reference, defined in (3.48), and a complexity C, defined in (3.49a) for
the monolithic Sy method and (3.49b) for the hybrid.  (In text mentions: p.74)
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(a) Reference (b) Si6: Ny = 101, (c) Sso: Ny = 101,
10° 10"

(d) Huc-s,: Ng = () Huc-sg: Na = (f) Hmees,:
51, Nfot, = 5.9 x 101, Npot = 2.3 x N, =
107, A = 19%, C = 10° A = 8%, C = 201, Nt = 9.0 x
8.0 x 107 2.5 x 107 10?
A=5%C= 99 x
109

Figure 3.2: Absolute difference between the analytical solution and various numerical solutions
to the line source problem at ¢t = 1 with CFL 0.5. Each numerical solution is characterized by
a relative L? difference A with respect to the reference, defined in (3.48), and a complexity
C, defined in (3.49a) for the monolithic Sy method and (3.49b) for the hybrid.  (In text
mentions: pp.74,75)
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Figure 3.3: The relative L?-difference A vs. complexity C for the scalar flux ® in the line
source problem, using the hybrid method with Sy (filled circle markers), the hybrid with Sg
(filled triangle markers) and the monolithic Sy method (empty, green markers). Points that
are down and to the left are more efficient. All methods where run for three different spatial
resolutions N, = 51(left), N, = 101(middle), N, = 201(right). Coloring of the hybrid data
points corresponds to the total number of particles Ni7, according to the colorbar. The
Sy method was run for N = 4, 8,16, 32. Each DG-data point is assigned a numerical label
according to its value of N. The formula for A is given in (3.48) which the complexity C is
given by (3.49a) for the monolithic Sy method and by (3.49b) for the hybrid.  (In text
mentions: pp.74,74)
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Selected results for the scalar flux ® are depicted in Figure 3.5, and the relative Ly-error for
these same solutions is depicted in Figure 3.6. While the hybrid solutions are not completely
free of ray-effects, these effects are much more pronounced in the Sy runs. A more rigorous
analysis of the performance of the two algorithm in dependence of their respective parameters
can be seen in Figure 3.7. This plot shows the relative error A of various runs in dependence
of their complexity C. It is noteworthy that for this test problem the accuracy is mostly
independent of the angular resolution, but depends significantly on the spatial resolution.
Increasing the overall particle count in the hybrid method is most effective at higher spatial
resolution; compare for example the vertical separation in colored triangles vs. colored circles
vs. colored squares in Figure 3.7.

It turns out that increasing the number of particles in the hybrid algorithm does not
necessarily increase the algorithm complexity. This is because with increased particle count
the iterative solver for the collided components often needs fewer iterations. In cases where
the complexity is dominated by these iterations, an increase in particles can even cause a
decrease in computational complexity. Overall, Figure 3.7 shows that the hybrid algorithm
produces results with comparable or slightly better accuracy than the standard Sy solver,

while being close to an order of magnitude of lower complexity.

3.5.3 The linearized hohlraum problem

In the linearized hohlraum problem [9], nonlinear coupling between particles and the material
medium is approximated in a linear way by adjusting the absorption and scattering cross-
sections according to the expected material temperature profile of the nonlinear problem [8].
The geometry of the setup along with the material parameters can be found in Figure 3.8.
The domain is X = [0,1.3] x [0, 1.3], and the initial condition is identically zero everywhere.
For boundary conditions, we assume a constant influx from the left side of the domain, i.e.
U(z=0,y,Q,t) =1 for Q, > 0. As discussed in the appendix, this boundary condition can
be treated as a surface source, modeled by setting 2, = /&, where £ ~ U([0,1]) is sampled
uniformly on [0, 1]. The spatial distribution along the boundary is sampled uniformly.

We again perform Sy and hybrid runs with varying spatial and angular resolution. The

spatial domain is subdivided into equal N, x N, square cells with N, € {52,104,208}. For
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the Sy-runs we use N € {4,8,16,32}, resulting in No = N? ordinates on the northern
hemisphere of S?. The collided part of the hybrid algorithm employs an Sy method with
N € {4,8}. In the hybrid method the number of particles is also changed between runs, but
the killing weight remains fixed at wyy; = 1071°. The number of particles newly inserted into
the system every time step is 2 x 10* for k € {2,3,4,5,6}. All runs are performed to a final
time of tgna = 2.6 and the CFL is kept fixed at 52. The reference solution is a Sgg-S16 hybrid
using a T quadrature in angle, a third-order DG method in space on a 448 x 448 grid, and
a defect correction time integrator [10].

In Figure 3.9, we show densities of a few select runs, calculated using Sy and hybrid
methods. The log of the corresponding relative Lo-errors are depicted in Figure 3.10. As
before, the Sy solutions suffer from ray-effects that are marginally reduced as the number
of angle increases. Meanwhile, most of the disparities between the reference and hybrid
solutions can be attributed to stochastic noise. The hybrid has a mix of ray effects from the
collided equation solve and particle tracks from the uncollided equation solve on the backside
of the hohlraum However, these errors here are on the order of 1072-10~2, which is much
smaller than the errors in othe back of the domain.

Detailed comparisons between the relative error against the computational complexity are
depicted in Figure 3.11. As before, increasing the angular resolution in the collided equation
does not benefit the accuracy of the hybrid method. Increasing particles also has less effect
than in the previous problems. The Sy solutions benefit most from finer spatial resolution,
while the angular resolution does not matter as much. Spatial resolution also plays the
biggest role for the hybrid. We do observe that for small particle counts (the purple points
in the figure) increasing resolution can actually increase the error. This is explained by the
fact that an under-sampled MC calculation does not benefit from more spatial resolution.
Nevertheless, for a fixed spatial resolution, we do observe an improvement in the error when
N, is increased.

Overall the hybrid runs produce solutions with comparable or better accuracy than
monolithic Sy runs with the same spatial resolution. Hybrid runs using Sg for the collided
equation achieve improved accuracy at nearly the same complexity while runs using S, for

the collided equation achieved improved accuracy with even less complexity.
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3.6 Conclusion and Discussion

In this work, we have presented a collision-based hybrid method that uses a Monte Carlo
method for the uncollided solution and a discrete ordinate discretization for the collided
solution. This combination of methods was originally proposed for the first collision source
strategy used in [3] in the steady-state setting. Thus this work can be considered as an
extension to the time-dependent setting that requires a remap procedure after every time
step.

Experimental simulations have been performed on three standard benchmarks. For each
benchmark, the results demonstrate that the hybrid method is more efficient, in the sense that
it achieves greater accuracy with the comparable or less complexity or is less complexity with
comparable or greater accuracy. Here complexity is a measure of how many unknowns are
updated during particle moves for Monte Carlo or sweeping iterations for discrete ordinates.

This work has concentrated on single-energy particle transport problems. However recent
work has shown that when considering energy-dependent problems, more opportunities for
hybridization arise when considering fully deterministic hybrids [42]. In those results it
was shown that low-resolution in energy can be used for the collided solution as well as
low-resolution in angle. With the introduction of Monte Carlo, new opportunities arise. For
example, continuous energy cross-sections could be used in the uncollided portion. This
could be important to treat resonances in neutron transport problems, but investigation
is needed to quantify any benefits from this approach. The methodology here may also
be extended to nonlinear RTE using standard linearization strategies, although corrections
will need to be introduced to handle energy temperature dependent opacities. In addition
future investigations should be made regarding the use of Monte Carlo techniques inside the
high-order time accuracy methods developed for hybrid problems in [9, 10].

Finally, a clear strategy for choosing of discretization parameters does not exist at this
point. The selection of spatial and temporal discretization parameters is much like any
other method. However, the appropriate choice for the relative degrees of freedom in angle
between the uncollided and collided equation is not clear; nor is the time interval to wait

until the relabeling is performed. While some work exists to understand errors introduced by
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the hybrid [16], the analysis is quite involved, even for a very simple case. Thus, the best
approach is most likely an adaptive strategy based on a-posteriori estimates. This will be the

topic of future work.

3.7 Acknowledgments

J.K. gratefully acknowledges support from the 2022 National Science Foundation Mathematical

Sciences Graduate Internship to conduct this research at Oak Ridge National Laboratory.

82



AN

A . o, | 05 | Q
1 blue(filled) | 10| 0 | 0

1$. . red(striped) | 0 | 1 | 1
white 0O[1]0

1 Bl

D

Figure 3.4: Geometric layout and table of material properties for the Lattice Problem.  (In
text mentions: p.75)
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(a) Reference

108

(d) Hymes,:Ne = (e) Huc-sg: Ne = (f) Hme-sy: No =
224, Nfot = 1.2 x 112, Nfot = 3.2 x 224, Ntot, = 1.3 x
10, A = 10%, 10, A = 13%, 10", A =3%, C =
C= 83x10" C=1.8x107 1.0 x 108

Figure 3.5: Numerical solutions to the lattice problem at t = 3.2 with CFL 25.6. Each
numerical solution is characterized by a relative L? difference A with respect to the reference,
defined in (3.48), and a complexity C, defined in (3.49a) for the monolithic Sy method and
(3.49b) for the hybrid. (In text mentions: p.79)
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(a) Reference (b) Sq: Ny =112,
A = 13%, C =
2.2 x 107

(d) Hyveesy: Ne = (e) Huc-sg: Ne = (f) Hyeosy: Ne =
224, Nfot = 1.2 x 112, Nfot = 3.2 x 224, Ntot, = 1.3 x
10, A = 10%, 10, A = 13%, 107, A =3%, C =
C =8.3x 107 C=1.8x 107 1.0 x 108

Figure 3.6: Lattice problem: Absolute difference between the reference solution and various
numerical solutions at t = 3.2 with CFL 25.6. Each numerical solution is characterized by a
relative L? difference A with respect to the reference, defined in (3.48), and a complexity

C, defined in (3.49a) for the monolithic Sy method and (3.49b) for the hybrid.  (In text
mentions: p.79)
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Figure 3.7: The relative L2-difference A vs. complexity C for the scalar flux @ in the lattice
problem, using the hybrid method with Sy(filled circle markers), the hybrid with Sg (filled
triangle markers) and the monolithic Sy method (empty, green markers). Points that are
down and to the left are more efficient. All methods where run for three different spatial
resolutions: N, = 56(left), N, = 112(middle), N, = 224(right). Coloring of the hybrid data
points corresponds to the total number of particles N7, according to the colorbar. The
Sy method was run for N = 4,8,16,32. Each DG-data point is assigned a numerical label
according to its value of N. The formula for A is given in (3.48) which the complexity C is
given by (3.49a) for the monolithic Sy method and by (3.49b) for the hybrid.  (In text
mentions: pp.79,79,79)
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Figure 3.8: Geometric layout and table of material parameters for the Hohlraum Problem.
All walls have a thickness of 0.05.  (In text mentions: p.79)
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Figure 3.9: Numerical solutions to the hohlraum problem at t = 2.6 with CFL 52. Each
numerical solution is characterized by a relative L? difference A with respect to the reference,
defined in (3.48), and a complexity C, defined in (3.49a) for the monolithic Sy method and
(3.49b) for the hybrid.  (In text mentions: p.80)
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(a) Reference (b) Sg: Ny = 104,
A = 18%, C =
9.8 x 10°

(d) Hme-s,:Ne = (e) Hyesg:Ne = (f) Hyeosy: Ne =
52, Npot = 2.1 x 104, Ntot, = 7.6 x 208, Niot = 2.9 x
10, A = 18%, 10, A = 11%, 10", A =8%, C =
C=1.1x107 C=9.7x 107 5.4 x 108

Figure 3.10: Hohlraum problem: Absolute difference between analytical solution to the line
source problem and various numerical solutions at t = 2.6 with CFL 52. Each numerical
solution is characterized by a relative L? difference A with respect to the reference, defined
in (3.48), and a complexity C, defined in (3.49a) for the monolithic Sy method and (3.49b)
for the hybrid.  (In text mentions: p.80)
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Figure 3.11: The relative L2-difference A vs. complexity C for the scalar flux ® in the
hohlraum problem, using the hybrid method with Sy(filled circle markers), the hybrid with
Sg (filled triangle markers) and the monolithic Sy method (empty, green markers). Points
that are down and to the left are more efficient. All methods where run for three different
spatial resolutions N, = 52(left), N, = 104(middle), N, = 208(right). Coloring of the hybrid
data points corresponds to the total number of particles N19%, according to the colorbar. The
Sy method was run for N = 4, 8,16, 32. Each DG-data point is assigned a numerical label
according to its value of N. The formula for A is given in (3.48) which the complexity C is
given by (3.49a) for the monolithic Sy method and by (3.49b) for the hybrid.  (In text
mentions: p.80)
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Appendix: Boundary conditions for the Hohlraum
problem

Unlike the line source and lattice problems, the linearized hohlraum problem involves non-zero
boundary conditions. A Monte Carlo implementation of this boundary condition is stated in
[15]; here we present a derivation of the approach that is used.

In the hohlraum problem, it is assumed that V(z,y,t,Q) =1 for x =0 and Q, > 0, i.e., a
constant flux of 1 along the left boundary is assumed for each incoming direction. To model
this with Monte Carlo, we assume that this flux is due to a source s, (see (3.37c)) located on
an infinitesimal slab just left of the boundary.

Consider first a finite slab S, = {(z,y) € [—a,0] x [0,1.3]}, where a > 0. We assume that
0, =0y =0 on S, that the source sy(z,y, Q;a) = sp(x,€2; a) is independent of y and ¢, and
that

5(2) = /0 5oz, 2 a)da (3.51)

is independent of a. Thus, s,(x,€,t) — §(2)d(z) as a — 0. To determine §;, we assume

that ¥ is independent of y and ¢ on S and satisfies the steady-state equation

QU (z,y, Q) = s, (z,y) €S, Q€S (3.52a)

U(—a,y,Q)=0, ye[0,1.3, € >0. (3.52b)

This formulation is consistent with (3.34), given the assumptions made on ¥, s, and the
material cross-sections. Integrating (3.52b) with respect to = and applying the boundary

condition in (3.52b) gives
HQ) =0, Q>0 (3.53)

Hence s, = ,0(x).
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Finally, to sample particles according to the probability density p(£2;) o< §, for Q, > 0,

we compute the cumulative distribution function (CDF):

Qz
F(Q,) :/0 2udp = Q2. (3.54)

According to the fundamental theorem of simulation [32, pp. 19-22], the correct angular

distribution can be sampled by generating uniform variables u € [0, 1] and setting €, =

F~H(u) = v/u.
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Chapter 4

A Likelihood Approach to Filtering for

Advection Diffusion Processes
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4.1 Disclosure

This chapter is, up to formatting, identical to the manuscript of the same name [8]. The
manuscript is collaborative work with Jorge. M. Ramirez and Juan M. Restrepo and at the
time this document is written under review in the journal Monthly Weather Review. The
ideas and results presented build on previous work by Juan M. Restrepo. New ideas and
results presented were worked out by Johannes Krotz under guidance of Juan M. Restrepo
and Jorge M. Ramirez. The manuscript was cowritten with Juan M. Restrepo and Jorge

Ramirez.

4.2 Abstract

A Bayesian data assimilation scheme is formulated for advection-dominated advective and
diffusive evolutionary problems, based upon the Dynamic Likelihood (DLF) approach to
filtering. The DLF was developed specifically for hyperbolic problems —waves—, and in this
paper, it is extended via a split step formulation, to handle advection-diffusion problems.
In the dynamic likelihood approach, observations and their statistics are used to propagate
probabilities along characteristics, evolving the likelihood in time. The estimate posterior thus
inherits phase information. For advection-diffusion the advective part of the time evolution
is handled on the basis of observations alone, while the diffusive part is informed through
the model as well as observations. We expect, and indeed show here, that in advection-
dominated problems, the DLF approach produces better estimates than other assimilation
approaches, particularly when the observations are sparse and have low uncertainty. The
added computational expense of the method is cubic in the total number of observations
over time, which is on the same order of magnitude as a standard Kalman filter and can be
mitigated by bounding the number of forward propagated observations, discarding the least

informative data.
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4.3 Introduction

A general framework in Bayesian estimation to assimilate observations and model predictions
has become known as data assimilation. Models are used to inform a prior and observations
inform the likelihood. For time-dependent problems, the estimation objective is to find the
evolution of moments of the posterior of a time-dependent state variable, conditioned on
observations. A variety of computational methodologies have been proposed to accomplish
this (see [17] and references therein). In linear problems with Gaussian noise processes,
the variance minimizer estimate of the time-dependent mean and variance of the posterior
can be obtained sequentially by the Kalman Smoother [12] or partially by the Kalman
Filter (KF) [7]. Kushner, Stratanovich, Pardoux (see, for example, [9]) proposed a variance
minimizer estimate for the nonlinear /non-Gaussian problem, however, it is computationally
tractable only for very low-dimensional state variable problems. Successful approximations
of the estimate can sometimes be obtained via generalizations like the Extended Kalman
Filter [10, 18], or the Unscented Kalman Filter [6], among others. Sample estimates can
be approximated via the Ensemble Kalman Filter [3, 4] and its variants, the path integral
method [1], and various particle filter schemes [11, 2, 14]. There are estimators that have
special properties (see [15]) or that exploit the underlying dynamics of the problem. An
example of the latter is the the dynamic likelihood filtering approach (DLF), first proposed
in [13].

The DLF is denoted an "approach" rather than a filtering method because, in principle, it
applies to any of the linear or nonlinear data assimilation methodologies. It was developed
specifically for problems in wave dynamics, in general, hyperbolic partial differential equations.
The crux of the DLF approach is to modify the conditional, posterior distribution of the
state variable by exploiting a property peculiar to wave problems: finite-time propagation of
information, which is utilised to propose a dynamic likelihood. A second aspect of DLF is
that it tracks the state variables of the partial differential equation along characteristics, thus
obtaining stochastic differential equations. Peculiarities of the DLF approach are that phase
information enters directly into the estimation, and that we can make Bayesian estimates

at times when observations are available and when they are not (even in the near future).
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The main practical advantage of the method is that it addresses the more common situation
in wave problems: sparse observation networks that are, nevertheless, fairly low in noise.
Under these circumstances, as was shown in [5], the DLF produces superior estimates when
compared to the best traditional estimator.

In this paper, we develop the dynamic likelihood approach for data assimilation problems
in transport modeled by forced advection-diffusion equations. We thus expand the range of
applicability of this estimation approach to an important class of dynamics. We will focus on
finding estimates of quantities of interest when the source of uncertainties appears in the
advection process and the forcing. The statement of the problem appears in Section 4.4.
The DLF evolves the likelihood forward in time along characteristics by generating pseudo-
observations at times between actual observations. A pseudo-observation is derived from a
real observation at a previous time. The pseudo-observation framework appears in Section
4.5.1. This section also details how the DLF approach applies to the advection-diffusion
dynamics, using techniques and ideas similar to a Kalman Filter.

To appreciate the practicality of the methodology, we present in Section 4.6 an accounting
of the cost of implementing the DLF on a sequential estimator data assimilation method. In
Section 4.7.2, we compare the DLF approach proposed for advection-diffusion problems to
the outcomes obtained via a Kalman Filter because the Kalman estimates for this problem
are familiar, optimal, and easily understood. A discussion and conclusions appear in Section

4.8.

4.4 Statement of the Problem

At issue is the estimation of the posterior covariance of a noisy scalar state variable u(z,t)
given noisy observations, and the minimization of its trace. Here and throughout, = denotes
space and t, time, The state variable obeys a noisy advection-diffusion initial value problem.
We will develop a DLF approach to a particular filtering estimation scheme. We focus on
linear dynamics since it allows us to evaluate the DLF approach in comparison with optimal
filtering schemes, nevertheless, we argue that the development presented herein will extend

to a number of nonlinear cases.
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We are motivated to consider the DLF approach to the dynamics of advection-diffusion
because it was shown in [5] that for hyperbolic dynamics, the DLF returned significantly
better estimates on noisy hyperbolic problems, particularly when the observations were sparse
yet had low uncertainty —which is the more common practical situation. We will, in fact,
show that for the advection-dominated case, the DLF approach yields better estimates than
other filtering approaches.

Since we are specializing to the linear advection-diffusion initial value problem with known
Gaussian noise processes it is possible to fully determine the posterior distribution with the
determination of the posterior mean and variance. We connote a sample time series from the
distribution of u(z,t) as the truth. We will make use of the truth for testing the performance
of the DLF. In practice, the truth is not available to us. Instead, we are given an approximate
solution of the stochastic advection-diffusion initial value problem, with known errors, often
in the form of a computer code. The estimation problem will thus be one of finding moments

of the posterior model state variable, given observations.

4.4.1 Dynamics, Model, Observations

The space interval over which the dynamical system is defined will be [0, L] C R, with periodic

boundaries. Space will be discretized by a grid X of equidistant nodes X = {xk =k- Aaz}K

k=0’
with 2% = L — Az due to the periodic boundary conditions. The time interval shall be
[0,¢x5] C R discretized in equal time steps T := {t,, = nAt}_ . We will denote the set T as
estimation times. On [0, L] x [0,ty] we consider the random field u(x,t), which obeys the

stochastic initial value problem

u — C(z,t)uy = Dug, + F(x,t), t>0, x€]0,L]

u(z,0) = ug(x), x€/0,L]. (4.1)

The subscripts x and t connote partial differentiation with respect to these variables. The
periodic initial condition is ug(x) is known or is drawn from an assumed known probability

distribution Y. The parameter D is the diffusion constant, F'(z,t) and C(z,t) are forcing
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and wave speed terms, respectively. It will be assumed that

C(z,t) = c(x,t) + o(x,t), (4.2)
F(z,t) = f(z,t) + x(z, 1), (4.3)

where f(x,t) and c(z,t) are the forcing and phase speed, respectively, which are assumed
known, deterministic and periodic on [0, L]. The random fields ¢ and y have the form
¢(z, t)dt = AdWe(x,t), x(z,t)dt = BdAW"(z,t) with A and B known constants, dW¢ and
dW™ incremental zero-mean Wiener processes, assumed uncorrelated. We define a semi-
continuous ensemble member solution to (4.1) on the space grid as U (t) := (U k(t)):zo =
(X)),

Going forward, bold variables will denote vectors or matrices. Superindices are space,
subindices are time. For all variables with a single index, e.g. a;, we denote by a., = {a;},.
the union over all indices between k and n.

We connote v as the model approximation to (4.1). We will build a specific one here as
follows: on the grid X x T, the values of v are obtained by a forward numerical solution of
the SDE (4.1). At each time ¢,,, we denote the collection of values of the model v(-,t,) on X
by

V, =v(X,t,) (4.4)

The vector V,, is evolved forward with the SDE solver
Vi1 =L, V, + VAt Aw, + At f, (4.5)

where L, € REXE is a numerical operator approximating the linear terms in (4.1), f, :=
( f (x’“,tn))szo and Aw, € RY is mean-zero Gaussian vector with covariance matrix Q,
accounting for the stochasticity of (4.1) and the model error. The distribution of V; and
(w,w, ") are assumed known. For z-values that are off-grid, we use linear interpolation in
space to extend the outputs of the numerical SDE solver (4.5) to [0, L] x T'. Namely, for
x ¢ X, we define

v(z,t,) = H(x)V,, n=1,...,N (4.6)



where H is a linear interpolation operator to be specified later. The model, up to time ¢, ,
is used to inform the prior 7(Vi.,,, ).

In practice, observations are obtained from instruments and the error is instrument-related.
Here we generate them synthetically from the truth. We assume that observations are
available at observation times {t,,,...,t,,, } = To C T. The set of available observations is
O = {(Ym, Ym)}i\f:1 which provide, up to noise, temporally and spatially localized records
on the value of u. Specifically, the observation pair (y,,, Y;,) corresponds to a time t,, in
the set of observation times Ty C T. The vector y,, € [0, L]! contains the I € N locations
where the observations were recorded, and Y,, € R is a measurement of the value of u at
those locations at time ¢, . Specifically,

Vi =uyl, tn,) €, i=1,...,1 (4.7)

m?

where the measurement error €, is a mean-zero, normal vector in R? with known covariance.
Note that observation times Tp C 1" do not include all times in 7" and that the number of
observations I does not depend on t.

By Bayes Law
77(%:nm‘yizm) X 7T<lfl:m‘%:nm)7r(%:nm)' (48)

The likelihood at time ¢, € Tp, informed by observations is m(Y1.,|Vomn,,). The prior
7 (Viun,, ) is informed by the model.

4.4.2 The Kalman Filter (KF)

In principle, the DLF approach applies to most sequential filtering schemes. Since the problem
we are considering is linear, we will be testing the DLF approach to filtering as applied to
the Kalman filter (KF). In what follows it will be understood that a comparison between the
DLF approach and the Kalman filter is to be understood as the DLF approach applied to

the Kalman filter and the classical Kalman filter.
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Referring to (4.8) the posterior at any time ¢, € Tp can be split up as follows

71-(‘/O:nm|}/v1:m) X 71-(}/’m|‘/nm)7r(‘/0:nm|Y1:m—1) (49)
(Vo [ Yim-1) = T(Va, Vi - 1) T (Vo -1 Yiem—1)- (4.10)

Let V,,,,, denote the posterior of V;, conditioned on observations up to t,. If t, =, € Tp

for some m, then this distribution is simply 7(V,,,,|Y1.m), which by (4.9) can be written as

‘/nm|"m ~ /Tr(‘/o:nm|}f1:m)d‘/;zm—1 te d‘/()
o (Y| Vi) /W(%:nm,ﬂYmel)anmfl e dV

= 1YV )™ (Vi | Vi —1j-1)- (4.11)

This prior 7(V4,,,|Va,—1jnm—1) can be calculated by applying the forward SDE solver (4.5)
to Vi,_1jn—1, while the Likelihood 7(Y},|V;,,) is determined entirely through the measurement
errors. If, on the other hand, ¢, ¢ To, we simply have V,,,, ~ 7(V,|V,,_1j,—1), which can be
calculated through the model. Thus the posterior of Vj.n can be calculated sequentially for
one V,, at a time, based on the posteriors up to the respective previous time step. All priors
and likelihoods here, and therefore the posteriors too, are normally distributed.

We denote by (V) and P,),, the mean and covariance of V|, and by (V;,,—1) and Py,
the mean and covariance of V,,_1 ~ m(V,|V,_1jp—1). Further, let R,,, = (€me ).

The KF produces sequential estimates for (Vnm) and P,,, and thus for the posterior
distribution, in two steps. In the forecast step the model is used to produce an initial estimate

of m(V,|V,—1jn—1). Since the model is linear and the noise is (unbiased) normal, the prior at

t,, is estimated through the model and the posterior at the previous time step:

<‘/n|n71> = Ln—1<‘/n71|n71> + Atfn—la n = 17 BRI N7 (412>
Pn|n—1 - Ln—IPn—1|n—1L;7,r_1 + Qn—17 n = 17 ey N7 (413>

T

._1)- Initial data is assumed to be known or a sample of a known

with Qn—l = <wn_1w

distribution. If no observations are available at time t,,, the posterior is not affected by the
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likelihood, and thus (V,n) = (Vajn-1), and Py, = Pyj,—1. If, on the other hand, observations
are available, i.e. n =n,, with t, =t,, € Tp, an analysis step is performed, which takes in
the mean and covariance of the prior <V;|n_1) and P,,,—; and the mean and covariance of
the likelihood (Y;) and R,, and calculates the moments of the posterior. For any step ¢,

with observations, thus, the analysis step consists of the update

Vo) = Valnn—1) + Ko (Vo) = H(y) (Vi i1} » (4.14)
P, (I — Ko, H(Ym)) P, jny—1- (4.15)

'mlnm =

Here H(-) evaluated at the vector v € Q7 is the interpolation matrix defined as H (v) :=
(H(vi))f:1 € RI>*K The term ((Ym) - H(ym)<Vnm|nm,1>) in (4.14) is called the innovation.
In (4.15) I is the N-dimensional identity matrix; K, is called the Kalman gain and is
defined as

Knm :an|nm—1H(ym)T

[H ) Pajo, 1 H () T+ R] (4.16)

4.5 The Dynamic Likelihood Approach

In hyperbolic dynamics, (waves) information (along with uncertainties) will flow along
characteristics. The DLF approach exploits the wave dynamics to propose a richer likelihood
than other traditional problems. An observation (y,,, Y;,) measured at time ¢, € Tp is used
to generate pseudo-observations (H,Ym, H.Y.m), at times t,, € T with ¢, > ¢, . These are
used to generate likelihood distributions in between observations. In fact, it is possible to
produce likelihoods in the future, so that in principle, it is possible to do Bayesian estimation
in the future. We refer to a likelihood, constructed from observations as well as from pseudo-
observations, as the dynamic likelihood. The pseudo-observations are tightly coupled to the
inherent model dynamics; in [5] we show how these are constructed for hyperbolic problems.

Here we show how these could be formulated for advection-diffusion dynamics.
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4.5.1 Pseudo-Observations

The pseudo-observation at time t,, from the observation y,, at time ¢, _, have locations

H,Ym = T,(t,) € [0, L)' which solve

dz,,,(t) = —c(a, (1), t)dt, th,, <t <ty,
2, (tn) = U i=1,...,1 (4.17)

A schematic of how H,y,, arises from y,, is depicted in Figure 4.1. The value ‘H,Y,, of the
pseudo-observations approximate u at the location of the characteristics, and they include a

measurement error. Namely, H, Y, = (v(z!,(t,), tn) + Ci(tn))le, where ¢%(t,,) has the same

distribution as €.
Ideally, #,Y,, would be the values at t = t,, of solutions u'(t) := u(z? (t),t) for t,,, <

t <ty of the following system of equations derived from (4.1) and (4.17),

it (1) = (D + S ADE (1) + F (a3, (0),1) )
+ BdW™" + Aul (t)dW*
u'(ty, ) =Y. (4.18)

A schematic of how a single pseudo-observation ‘H.,Y;, would behave along a characteristic is
depicted in Figure 4.2.

As the truth w is assumed unknown, we recast equation (4.18) with an approximate
form where the terms u’ and u’, are replaced by approximations v(,)(z,t) = u,(z,t) and
V(za) (7, 1) R Uge(x,t) which we refer to as first and second derivatives of the model. (We could
obtain v(g)(x,t,) and v, (z,t,) from the interpolated model v, this is not a requirement
and they could just as well be given from another model or data). With these replacements

(4.18) becomes

) = (D4 % ) vl (0,004 1)

+ Avgy (2, (£), 1)) dWVe + BdW™

m
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Figure 4.1: Schematic depiction of how locations of pseudo-observations H,y,,(orange)
are derived from the locations of observations w,,(green) by propagating along
characteristics(black). In this graphic at t,,, only observations are available, thus only
a classical filtering step can be performed, at t,, only pseudo-observations are available, thus
a regular DLF step can be performed, and at ¢,,,, observations and pseudo-observations are
available, which means an MDLF step would be performed. (See section 4.5.1 for the definition
of DLF/MDLF-step and calculations of H,y,, as well as H,Y,,.) (In text mentions: p.107)
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Figure 4.2: Schematic depiction of how values of pseudo-observations H,Y,, are derived
by evolving observations Y,, along characteristics. At ¢, , we see a single observation
Y at location y’ (green dots). At t, the pseudo-observation H,Y;’ at location H.,y’, is
depicted(orange dots.) As a dashed green line, we see a curve of constant amplitude Y along
the characteristic starting at y¢ . From Y to #,Y; in black the actual trajectory of the
pseudo-observation is shown. Underlayed in red are times, when the pseudo-observation is
smaller than Y and underlayed in blue are times, at which the pseudo-observation exceeds
the value of ¥/, (In text mentions: p.107)
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@ (t,,) =Y, (4.19)

Provided v,y and v, along the characteristic @,,(t), equation (4.19) is a well-posed

approximation of (4.17). We thus finally define the pseudo-observations

HoYm = (a:,’n(tn)) - (4.20)

and
, (4.21)

where the z¢ (t) and @'(t) solve equations (4.17) and (4.19) respectively for i = 1,... 1.
At estimation times ¢, € T, the pseudo-observations (H,Ym, H,Y) are treated like real

observations, and the pseudo-observation error ¢, € R! is defined as
Cn = MY — v(HnYm, tn). (4.22)

¢n is assumed to be distributed according to a mean zero Gaussian distribution. Recall that
the value of v(H,Ym,t,) can be obtained from V,, using (4.6). Equation (4.22) thus induces
the distribution 7(H,Y,,|V,), which will be used to inform the Likelihood at times ¢,, used
in the DLF and discussed in section 4.5.2. For later reference, we define H,,ys.,, and H,, Y.m
for ny < n,, <n as, respectively, the column vectors obtained by concatenating all H,y, ,

and ‘H, Y, , witht, , €Tp and t,, <t, , <t,,. Namely,

7'Lnyﬁ HnYE
%nyﬁzm = ) 7'tn}]&m =

Thus (H,Ye.m, HnYem) contains all pseudo-observations at time t,, derived from observations

that were measured at times between t,,, and ¢, .
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4.5.2 Formulation of the Filter

We define for the duration of this section n € {1,..., N} and m € {1,..., M} such that
Ny < N < nypaq. Under the assumption posed on the model, observations and pseudo-
observations, the DLF yields an alternative form of the posterior of the model, up to time ¢,

conditioned on observations measured up to time ¢, :
W(‘/On’}flm) X 7T(}fma 7'tnlem—l‘‘/vn)’]r(‘/():n’}/1:771—1)- (423)

Let V,,},, denote the posterior of V;, conditioned on observations up to time ¢,,. It is distributed

as

‘/;Wl ~ W(‘/;L’Ymu Hnl/l:mfl)
= [ A (Vo [Yiim)dVi, 1+ Vi
X 7T(Ym7 %nlfl:m—ﬂwm) . /W(%mm—l|}fl:m—l)d%m—1 Ce d‘/(']

= 7T(}fma7"11Y1:7n—1|‘/vn)’ﬂ(‘/n“/nflmfl)- (424)

We therefore see that this posterior at time t, is entirely determined by the likelihood
of observations and pseudo-observations at t, conditioned on the model up to this point
(Yo, HnY1.m-1|Vy), and the distribution of the model conditioned on the posterior at the
previous time step m(V,|V,_1jn—1). The latter is used as a prior at ¢,.

This shows that, as in the KF approach and given the observations and pseudo-observations,
the distribution of V,,,, can be found sequentially based on the posterior distribution at
the previous time step V,,_i,—1. For t,, < min(7Tp) there are no pseudo-observations, i.e.
H,Yi.,—1 = () is an empty vector, thus the KF approach is recovered.

If on the other hand ¢, > min(7p) there are two cases to be considered:
(i) there are no observations at t,, ¢ Tp and thus (Y., HoYim—1|Vy) = 7(Ho Yim-1| Vi),

(i) t, = tn,, € To and therefore
7T(va; %nmyvl:mfl“/nn) = 71-(,;'anyvlszl“/Vnm)7-‘-<va|‘/;1m)-
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We call a step of the DLF algorithm in the first case a DLF update and in the second case a
multi analysis DLEF (MDLF) update. In the first case one proceeds as follows:

The DLF update:
Predict:(Viyjn-1) = Ly-1(Va1jn—1) + At 1
Py1=L, 1P, 1y 1L} |+ Qo
(Y2, Ya) = (HoYim, HonYiim)
Ry = Cov(Yy, Yy)
Analysis:(Voyn) = Vo1 + Ko ((Yar) = H(y)(Vajn1))
P = (I — Ky H (y3)) Pyjn—y

where

K, = n|n_1H(yy)T (H(yq.t)an_lH(yy)T —|—R>_1 This covers the case, where only
pseudo-observations are available at time t¢,. Derivations of this mirror the derivation
of the KF exactly, if observations are replaced by pseudo-observations. If both real and
pseudo-observations are available at ¢, = ¢, , i.e. n = n,,, a multi-analysis step is performed.
The prediction step is identical as in the previous case. The Analysis step however changes

as follows:

The MDLF update:
Predict: (V.. jnm—1) = Lnp-1{Van—1jnm-1) + At fn,.—1
Py imm-1=Lu, 1P ij 1Ly i+ Qi
(Y2, Yau) = (Ho, Y1m—1, Hop, Yiin—1)
Ry = Cov(Yy, Yy)
Update:(Vi,,.jn,.) = (Vaunn-1) + K5 (Vo) = H (Y ) (Vajn-1))
T ((Yar) = H(y30) (Vo 1))
Ym)

P, =I-K, H(

mlnm
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where

K, = - -KH(y,)DH (yn) K

Nm

Jnm = (I - Kan(ym))D
with

K :an\nmle(y’H)T ' (an + H(ym)anmmle(ym)T)_l
D =P, n, 1 H(yn)" (Ra + H(ys)Pr,jn, 1 H(yz)"

—1

The derivation of these gains can be found in either [13] or [5]. Note that the size of the
matrices to invert in the calculation of these gains is determined by the size of Ry € R™/ X1
In practice, it might be reasonable to limit the size of this matrix by not using all pseudo-
observations indefinitely, but rather discarding some in a trade-off between accuracy and
complexity. As an example, replacing H,y1., and H, Y., by H,Yk,.m and H,Yx .m
respectively in the previous algorithms, for some k,, would discard pseudo-observations
derived from the oldest observations as time goes on, thus limiting the size of Ry to

(m — k,)I(m — k,)I. The overall complexity of the DLF and the effects of discarding "older"

pseudo-observations like this are discussed in the next section.

4.6 Analysis of Computational Complexity of the DLF

The DLF approach has an added computational overhead, as compared to its standard
counterpart. In what follows we estimate the overhead of the DLF approach to Kalman
filtering, as compared to the native Kalman filter. As will be shown subsequently,

improvements in the estimates obtained using DLF may offset the added computational
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burden. The additional computational cost of the DLF, compared to the model on its own,

stems from two sources:
1. Calculating the pseudo-observations (H,Y1.m—1, HnY1m—1)-
2. Calculating and applying the gains K,,, K, J,,.

If an explicit ODE solver is used to solve equations (4.17) and (4.19) to calculate

tn—tny,

A Since

(HnYm, H,Y,) at t,, € To the complexity is linear in the number of time steps
H,ym € Rl and H,Y,, is normally distributed in R these calculations over a single time
step are dominated by the calculation of the covariance R,,,, = Cov(H,Ym, H,Y,,) € R*!
leading to an overall complexity of order O (%I 2) to calculate (M, Ym, HnYm) for a single
tn,, € To. Considering this has to be done for all pseudo-observations (Hyy1.a—1, HnY1.0-1)
this leads to a complexity of O ( M %_]2) < O(MNTI?).

The complexity of calculating the gains at time t,, € T' is dominated by inverting matrices
of the same size as the covariance matrix R4,. At time ¢,, let this size be s,, X s,,. Note that

for times ¢, <t, <t this size is s,, = m1. The computational cost of matrix inversion is

o1
cubic in the number of rows and therefore the complexity for the n—th time step is O(I3M?3).
Over all time steps this is bounded by O(NM?3I3). The complexity of the KF arises from
inverting matrices of size I x I at each of the M observation times, thus having an overall
complexity of O(M1?). The DLF’s overall complexity is O(MI? + M NT?).

Note however, that in all these complexity estimates so far we assumed that all pseudo-
observations (H,Ym, H,Y,,) are used for all ¢, > ¢, . Ast, —t,, increases so does the
uncertainty associated with (#,Ym, H,Y,). Therefore discarding this pseudo-observation
eventually would have only a small effect on overall accuracy. Thus if run time is of the
essence, discarding some pseudo-observations after they outlived their usefulness can help to
keep complexity in check. One way to proceed with this program is to set an upper bound for
the number of pseudo-observations assimilated at any given time, or by setting a threshold
on uncertainty, discarding the relatively most uncertain observations/pseudo-observations.

As an example, let us assume the number of pseudo-observations is capped at an integer

multiple of I, say pl, and the oldest pseudo-observations are discarded every time this

threshold is reached. This means at any given time t,, only observations from the last p
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observation times are used to calculate pseudo-observations. At an observation ¢, =t,, , a
multi-analysis step is performed, before the oldest pseudo-observations (M, Ym—p, Hn,, Yin—p)
from time ¢,,_, are discarded. In other words (Hny1.m—1, HnY1.m—1) in the DLF algorithm
is replaced by (H,Ym—pm—1, HnYm—pm—1). This limits the number of pseudo-observations
concurrently in the algorithm to pI from the previous maximum of MI. We get new
complexity estimates under these circumstances by making the replacement M — p in the
previous estimates. Thus the complexity of the DLF falls to O(Np3I® + pNI?). Assuming
p is picked reasonably small (p << N and p < I) this reduces further to O(NI?), which is
comparable to a standard KF’s complexity of be O(M1?3). (While the calculation of the gains
can be a bottleneck of the algorithm, it is noteworthy that as long as neither ¢ nor f in
equations (4.2) and (4.3) depend on the observations Y;.)s, the gains are also independent of

Y1.as and can thus be calculated offline).

4.7 Numerical Results and Comparisons

We contrast the DLF approach, as applied to the KF (the DLF), with estimates obtained by
the native KF (the KF). We will also discuss the numerical details of our implementation
and introduce the metrics, based on which we will evaluate the performance of the two

approaches.

4.7.1 Computational Details

Since the DLF approach was developed specifically for hyperbolic (wave) equations, we
are especially interested in determining to what extent it can handle advection as well as
macroscale diffusion. We thus introduce the non-dimensional quantity « := D/cyL, where D
is the diffusion coefficient, ¢q is the typical size of the velocity C', and L is the characteristic
length which is taken as the length of the domain, to capture the extent to which diffusion
processes and advection qualitatively affect the solution. Let the primed nondimensional
quantities be

teo , U FL C

x / / /
T U= 9 U = —, F = ) C =
L L Uo UpCo Co
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then Eq. (4.1) is now recast as

u—(c+x)uy = Qug+f+¢, t>0,2€]0,1],
u(z,0) = U(x), z€][0,1], (4.25)

in dimensionless units, having dropped the primes. It is still assumed that ¢ and y are noise

terms generated by Wiener processes. Therefore ydt = AdW*¢ and ¢dt = BdW™ still hold.
We run all numerical examples shown in this section on a domain [0, 1] with periodic

boundary conditions and times spanning t, = 0 to ty = 0.5. We chose Az = 0.01 and

At = 0.005, in dimensionless units for the discretization. The wave velocity is set to be
C(x,t)dt = cos (5mt) dt + AdW®(x,t) + AdW,(t)

Note that we split the wave noise term into AdW¢(x,t) + AdW,(t). Both dW* and dW, are
incremental Wiener processes, but diW¢ will be assumed to be uncorrelated in space, i.e.,
(AW (2)dW(y)) = 0, for all x,y € X, while dWW, is independent of z. We will set A = 0.05
for all numerical experiments but will consider two cases of A when simulating the truth. In
the first case A = 0, while in the second A = 1. The model will be unaware of A, i.e. assume
A =0 in both cases. This introduces a systematic error in C' for the model that the KF and

DLF will have to overcome. The effects of this will be discussed in section 4.7.2.

In all of the following examples, we assume that the forcing is given by
F(z,t)dt = BdW"(z,t) = 0.05dW"(z,1)

where dW"(x, t) is an incremental Wiener process in time for each « and (dW*(z, t)dW"(y,t)) =
0z forall z,y € X.
The initial data will be

up(r) = o exp(—250(z — 6)?).
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The amplitude o and phase 6 will be deterministic or chosen from random distributions. We

will discuss three kinds of initial data for the model: (i) the deterministic case where o =1

1 3

and § = % (see Section 4.7.2); (ii) with uncertain amplitude: o ~ U [5, 5

2 }, where U indicates

a uniform distribution, and 6 = $; and (iii) the case of o = 1 and uncertain phase 6 ~ ¢[0, 1].
In all these cases the amplitude and phase of the truth are fixed to 0 =1 and 6§ = % Cases
(ii) and (iii) will be highlighted in Section 4.7.2.

The truth will be used to test the outcomes as well as to generate observations. The
truth is computed through Strang-splitting [19]. Equation (4.1) is split into a noisy advection

equation

ut_<c+X)ux:f+¢

and a deterministic diffusion equation
Ut = QUgy,

which are then used to generate a solution sequentially. The diffusive step is solved via FFT
by calculating an exact solution in Fourier space. For the advective part of the splitting, we
chose a Lax-Wendroff scheme in space and a stochastic Runge-Kutta scheme in time. The
chosen RK method is a third-order scheme with second-order weak convergence [16].

The model is given to us as a first-order split step procedure, splitting (4.1) into the same
noisy advection equation and diffusion equation as for the truth. The diffusion step is, again,
solved exactly via FFT. The advective step of the model is solved with an upwind scheme in
space and an explicit Euler scheme in time. The Courant number for all methods is 1.

Observations are derived from the truth. These are made available at observation times
tn,, € {0.05,0.1,0.15,...,0.45} = Ty by uniformly drawing their locations ¥}, ...,y € X
from the grid, without repetition. Their corresponding values are then determined from
the truth via Y = u(y! ¢, )+ €, where the €' are drawn independently from a mean
zero normal distribution with variance 10~%. Throughout the next sections, the number of

observations at each observation time will take values I € {10, 20,40,60}.
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Both the KF and the DLF require the interpolation operator H(z). In these tests, we

use a simple linear interpolation operator, which for x € [0, L] is defined as

H(z) == ((1 = r(2)0k0) + 7(2)001) 5 € RE. (4.26)
Here, r(z) = mod (2, Az) is the remainder of 3=, §;; is the Kronecker delta, and ¢ €
{1,..., K} is chosen such that 2* <z < 2! for grid points x¢, "' € X. (To account for

periodic boundary conditions, assume 2% < 2% = L for 2% <z < L).

To calculate H,,y,,, we use an explicit Euler algorithm to solve equation (4.17). Since for
H.,Y,., the calculation of the mean and covariance is sufficient for the algorithm we use an
explicit Euler algorithm based on equation (4.19) for each of those as well. The derivatives
of the model are therefore only required at ¢, € T. We obtain them through the model
as V() (z,t,) = H(x)V,V, and v (2, t,) = H(x)V,4,V,, where V, and V,, are center
difference operators approximating first and second derivatives. Thus over a single time step

from t,_q > t,, to t, and with H,, := H(H,y,) and R, ,, = Cov(H, Y, H,Y:) we use
A%\ -
<%nYm> - <%n—1Ym> + At - <D + 2) Hn—1v$$<‘/;z—1\n—1>7
and

Rn,m - Rn—l,m + At - (B2I + A2(v$ﬂn—1<Vn—1|n—1>)(vlﬁn—lvn—lln—l)T)
2

A ~ ~
+ Atz : (D + 2) Hn—lvxxPnfl\nflv;rxH;——l' (427)

The second line in (4.17) is an explicit Euler scheme modeling the system noise, while the
third line tracks the errors introduced due to the uncertainty of V,.

To quantitatively compare the traditional KF to the DLF approach to the KF we calculate
the following metrics: the Residual Mean Square (RMS) error, the Mass error, the Center of
Mass (CoM) error, and the probabilistic Calibration. These are given by

n=1k=1

RMS error:\l AtAz Y > |U(t,) — (Va2
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nlkl

where 1(-) is the indicator function.

The RMS error tracks the sum of local errors between model and truth, while the Mass
error determines how accurately the total mass in the system is captured. The CoM error
remains small if the position of the center of mass is captured well by the model. This is
important in advection-dominated problems and in our examples will be mostly determined
by how well the position of the maximum is captured over time. The Calibration measures
the percentage of times the truth is within two of the estimated standard deviations of the
model. If both noise and model error are normally distributed and captured correctly by the
uncertainty, this value should be approximately 95%. Higher values indicate the variance is
overestimated, while smaller values mean the uncertainty is larger than estimated. In the
following sections, we will see these measures evaluated in total and at specific times. When
evaluated at a specific time t,,, the At and the sum over n will be dropped and what remains
will be evaluated at the corresponding n. To account for the randomness in the generation
of the truth,(and the initial data of the model, where applicable,) all records of these four
metrics from hereon will be based on 50 runs each: Line plots of RMS, Mass, Com error and
Calibration will show their mean value over 50 runs, while all box plots will be based on their
respective minimum, maximum and the 25%, 50% and 75% quantiles. Between each of these
runs the truth, observations, and initial data will be regenerated. For comparability, the KF

and DLF will use the same Observations and initial data for each individual run.
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4.7.2 Comparing the KF, and the DLF Outcomes

We will compare outcomes for deterministic and aleatoric initial data, uncertainties in the

phase speed and as a function of «.

Comparing the KF and DLF in Systems with Deterministic Initial Data

We will compare posterior predictions V/,,. The comparison is conducted in a setting where
both the noise of the phase speed dW*¢ and the noise of the forcing dWW* are uncorrelated in
space, i.e., (dW(x)dW (y)) = d,,. Both methods are provided with deterministic initial data,
oc=1,and 0 = % and A = 0 . Throughout this comparison, both the relative diffusion a and
the number of data points per observation [ will be varied. We will demonstrate that the
DLF outperforms the KF in terms of RMS, Mass error, and Calibration, particularly when
the number of data points is sparse and when « is small. The amplitude of the wave noise
will be fixed at A = 0.05 for the entirety of this section.

We first examine an individual run in the advection-dominated case. For a = 0.01, Figure
4.3 shows the truth (right), the model prediction through the KF (left), and the prediction
of the DLF (middle). Both filters were presented with I = 20 data points per observation
time. The location of these data points is randomly selected at each observation time but is
identical between the KF and the DLF. Note that the trajectories of pseudo-observations
depicted extend beyond the availability of observation, providing Bayesian predictions at
times t > 0.45, which can be considered the future.

At the observation sites, both the KF and the DLF pick up the values of the observed data
and adjust their predictions during the analysis step. The DLF manages to maintain these
adjusted values over the simulation time, while in the KF, adjustments due to observations
quickly vanish due to diffusion. This is not surprising, as the DLF reinforces the information
gathered from observations through pseudo-observations that move along characteristics.

Figure 4.4 confirms that the DLF captures the truth more accurately, as quantified by
the metrics. We examine the time series of these four metrics for the same parameters and
conditions used to generate the previous example. Starting from time ¢ = 0.05, the first

observation time, there is a clear divide between the KF and the DLF in the RMS and
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Mass errors, with the DLF performing significantly better. The same can be said for the
Calibration, though the advantage of the DLF is less pronounced. There appears to be no
such clear trend for the CoM error.

As the last part of this set of experiments, we examine if these trends hold up when the
remaining parameters o and I are varied. Figure 4.5 depicts boxplots of the time-averages
of the four metrics across a range of numbers of observations I and diffusion constants a.
All combinations of I € {10,20,40,60} and a € {0.001,0.01,0.1} were analyzed. These
numerical examples confirm our expectations: for advection-dominated dynamics and sparse
but low-uncertainty observations, the DLF does significantly better in terms of Mass errors.
In terms of the RMS, CoM, and Calibration, we see that the DLF outperforms the KF
when data is sparse, namely I = 10,20. The KF gains an advantage when observations are

plentiful.

Comparison of the KF and DLF Estimates When Uncertainties in the Initial

Conditions Are Present

Since the DLF constantly imparts phase information via the likelihood of the pseudo-
observations conditioned on the model, the DLF approach should deliver better predictions
than the KF on problems where there are uncertainties in the initial data. Again, this is
expected when the data has low uncertainty and the dynamics are advection dominated.
We will compare the quality metrics of the two methods with initial condition uncertainty.
We will show that the DLF manages to overcome this restriction within a few time steps,
practically reaching error values comparable to the case of known initial data.

To simulate this uncertainty in the initial data, the truth will be generated with the same
initial data as in the previous section, namely ¢ = 1 and 6 = 0.5, while both the KF and
the DLF will be provided different initial data. We will examine two different cases in this
section. First, the amplitude o provided to the filters will be drawn uniformly from U [%, %],
unless individual runs are discussed, for which o # 1 is picked by hand. Throughout this first
set of examples, the phase 0 = % is assumed known. In the next set of examples, the phase 0

will be uniformly drawn from ¢/[0, 1], while assuming ¢ = 1 is known. There will again be an
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exception when discussing individual runs, for which 6 # 0.5 is picked by hand. The initial
data provided to the KF and DLF will be identical for each run to guarantee comparability.

We test the same values for the relative diffusion a = 0.01 and the number of data
points per observation I = 20 as in the previous section. Noise levels remain the same as in
the previous section. We will demonstrate that the DLF is significantly more successful in
correcting its incomplete knowledge of the initial data than the KF. All trends observed in
the previous section, that is, smaller errors and better calibration for the DLF, persist under
these settings.

In Figure 4.6, we see the results of an individual run where o was set to 0.7 for the model
and 0 = % The number of observations available is I = 20, and o = 0.01.

We see that the DLF manages to correct its incorrect initial amplitude almost immediately
as soon as it has access to observations, while the KF struggles to correct its estimation of
the amplitude throughout the run.

The time series of the four metrics are shown in Figure 4.7. These still used I = 20 nor
a = 0.01 was changed from the previous run. We observe qualitatively similar results as
before. The DLF performs better in terms of RMS and Mass error, as well as in Calibration.
There is no significant difference in the CoM error.

The advantage of the DLF over the KF in terms of RMS and Mass error is significant.
After a brief adjustment period, the DLF reaches the same levels as in the case with known
initial data. The advantage in Calibration is less pronounced and comparable to the previous
case.

Figure 4.8 shows boxplots of the total value of each of the four metrics across parameters
a € {0.001,0.01,0.1} and I € {10,20,40,60}. We observe the DLF performing better on
RMS and Mass error, as well as Calibration, with the advantage expectedly dwindling as the
number of observations increases and the diffusion ramps up. In the case of the Mass error,
the DLF is still superior across all I and a.

Next, we will focus on phase error effects on the estimation. In the remainder of this
section, we repeat the previous experiments, but now fix ¢ = 1, while § ~ U[0, 1], unless

focusing on just a single run.
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Figure 4.9 depicts results from such an individual run with 6 = 0.25. The diffusion was,
again, set to & = 0.01 and [ = 20. Both filters start with the mode in the wrong position
and pick up on their location error as observations become available. The initially displaced
mode decreases in amplitude for both models, while a second mode in the correct location
starts emerging as soon as observations are available.

The DLF manages to suppress the wrong mode over just a few time steps, roughly the
same amount of time it takes to pick up the correct position and amplitude of the actual
mode. The KF does significantly worse in this setting, taking almost the entire simulation
time to drop the phase error.

In Figure 4.10, we analyze the average time series of four quality metrics again. The
diffusion @ = 0.01 and number of observations I = 20 remain the same. The DLF still
performs better than the KF in terms of RMS error and Calibration, with a much bigger
advantage in Calibration than in the previously discussed examples. For the first time, there
is a clear difference in the CoM error, with the DLF taking a significant lead. Note that in
terms of the Mass error, the DLF initially does worse than the KF. This can be explained by
the DLF picking up the phase and amplitude of the correct mode, before phasing out the
incorrect first mode. In fact there is a brief period where it estimates the existence of two
modes. In the long run, the DLF outperforms in terms of Mass error as well.

To close out this section, we test whether the advantage of the DLF over the KF can be
sustained for different values of I and «. Figure 4.11 depicts the statistics of the four metrics
for I € {10,20,40,60} and a € {0.001,0.01,0.1}. We observe the following: The DLF does
substantially better on RMS, CoM, and Calibration, confirming all trends seen so far in this
section. Unlike previously observed, the DLF sustains its advantage throughout cases with
higher numbers of observations, likely because more observations make it more probable to
pick up the correct location of the true mode in the analysis stage of the assimilation.

In terms of Mass, the DLF now actually performs worse than in previous cases, and even
slightly worse than the KF, when few observations are available. This can be explained by
the fact that we are looking at time averages of the Mass error here. Since the DLF yields two
mode estimates early on, for a brief period, its Mass error is higher. Additional observations

help depress the second mode.
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Comparing the KF and DLF When Uncertainties in Phase Speed are Present

In the previous section, we compared the DLF to the KF assuming limited knowledge of the
initial data. In this section, we will showcase how both filters perform under the assumption
that phase errors are significant. To this end, during the simulation of the truth, A = 1 will
be used, while the model and thus KF and DLF estimators are unaware of this and still
assume A = 0. This will cause substantial divergence between the phase speed of the truth
and the phase speed used by the model, resulting in significant displacement of the position
of the center of mass, if no assimilation happens. Initial data is assumed to be known. The
DLF outperforms the KF in terms of RMS and Mass metrics, but it will also be shown that
the DLF can correct the displaced center of mass better than the KF. We first take a look at
an individual run again. Predictions and truth are depicted in Figure 4.12. Diffusion is again
a = 0.01 and I = 20 observations are available at each observation time for this example. As
seen in previous sections the DLF manages to adjust its predictions to the observations much
more rapidly than the KF.

Regarding the time series of the quality metrics depicted in Figure 4.13 we now see
the DLF outperforming the traditional KF in all metrics except the CoM error, where it
occasionally does slightly worse.

Considering the total values of the four metrics over a larger range of o and I we see the
DLF clearly taking the lead. Boxplots of these statistics are depicted in figure 4.14. The DLF
performs better on average regarding all four metrics, this time persisting through higher
diffusion and increased number of observations, as far as examined. This again shows the
superiority of the DLF over the KF in the case of an ill-informed model, this time illustrated

by the models getting the phase speed wrong.

Dynamics and the DLF and KF outcomes

In previous sections, we compared the capabilities of the DLF and the KF under increasingly
complex uncertainties in the model. All these experiments were initially conducted in the
advection-dominated setting o < 1. In this next section, we will consider the performance of

the DLF and KF under different dynamic conditions, i.e., when o =~ 1 or larger. The DLF
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relies on the propagation of observations along characteristics determined by the advective
part of the system. The evolution of these observations along these characteristics occurs in
the presence of diffusion, which is determined by the derivatives of the imperfect model v.
Thus, we expect diminishing returns in the high o regime for the DLF. We will examine this
next. In the following experiments, I =20, 0 =1, 6§ = %, and the noise remains spatially
uncorrelated, i.e., A = 0. The resulting average metrics as a function of & on a range of
a € [0.0001, 5] are depicted in Figure 4.15. As noted previously, the DLF has an advantage
over the KF in all four analyzed metrics as long as advection dominates, i.e., & < 1. However,
this advantage decreases as « increases. Nonetheless, the DLF remains useful if the data is
sparse.

In the advection-dominated case, the advantages of the DLF were more pronounced in
cases of ill-informed models. Thus, as a last experiment, we will investigate if these advantages

can be maintained as « increases. To this end, we assume uncertainties in the initial data

13

3+ 5] and 0 ~ U[0,1]. Further, we reintroduce the systematic

amplitude and phase, i.e., 0 ~ U]
uncertainty in phase speed into the model, i.e., A = 1, when simulating the truth. The
number of observations is set to I = 20, while o € [0.0001, 5]. The resulting average metrics
are depicted in Figure 4.16. We see now that the DLF, again, performs better in all four
metrics over the entire range of analyzed a. For RMS and Mass error, as well as Calibration,

the distance between DLF and KF decreases as « increases, while the advantage in terms of

CoM error seems to be nearly unaffected by the values of .

4.8 Discussion and Conclusions

The DLF approach to data assimilation was developed to handle hyperbolic (wave) dynamics.
In this work, we extend the DLF approach to handle advection-diffusion dynamics. The DLF
approach was first proposed in [13] and made operational in [5] on hyperbolic problems. A
significant challenge in extending DLF to advection-diffusion problems is that the diffusion
term needs to be evaluated along characteristic paths. We used the derivatives of the model
as an estimator for this term. However, there are other alternatives, depending on the physics

underlying the problem.
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In this study, the evolution of observations through time was driven by a combination
of data and the model at hand. Since the grid points used in model calculations and the
characteristics along which observations travel in the Lagrangian frame did not necessarily
coincide, extrapolation of the model to these off-grid points was required.

There are two ways the DLF can be formulated. In both cases, phase information
is conveyed via the dynamic likelihood. In the multi-analysis case, observations or their
projections forward in time, along with their uncertainties, can improve the extent of space in
which observations affect the analysis product. In practice, the decision of which observations
to keep for how long after their original measurement will need to balance computational
complexity against improved accuracy.

The DLF approach requires a code that can solve the characteristics problem. With
this solver, all additional implementation steps are no harder to implement than the classic
KF. Like the KF, the computational complexity of the DLF approach applied to the KF is
cubic in the maximum number of data points used at a time step. It can, however, still be
significantly higher than the KF, since the DLF would be potentially applied more frequently
than if applied at observation times exclusively. Some countermeasures to keep the DLF’s
complexity in check were discussed. Improved estimates make the higher computational cost
justifiable.

Using numerical simulations, we demonstrated that the dynamic likelihood filter (DLF)
outperformed the standard KF estimation concerning several metrics of accuracy. We showed
that the DLF is superior to the KF when advection dominates diffusion, and observations

are sparse and have high precision. Further, we demonstrated that:

e The DLF leads to a more accurate prediction of the truth than the KF, as demonstrated

through its lower RMS in all experiments.

o The DLF estimates are significantly less sensitive to uncertainties in the initial data
than the KF. It manages to predict the correct phase and amplitude within a shorter
time and does so more accurately. As a result of capturing the phase more accurately,
the center of mass of the solution is predicted with more accuracy. Further, the DLF

gives more accurate local estimates (RMS) and predictions of overall mass.
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o The DLF leads to more accurate predictions even when the phase speed is affected by

a great deal of uncertainty.

o The DLF is superior in estimating the variance, particularly when uncertainty beyond

noise is introduced through uncertain initial data or an ill-informed model.

The last three points remain true, even when diffusion and advection are roughly the same
(= 1).

In summary, the DLF approach to data assimilation on advection-diffusion problems shows
great promise as an estimator, particularly when the observation network is sparse yet of low
noise. The implementation requires special time integrators, but its computational overhead
is well offset by producing better estimates. In [5], we showed that the DLF permits Bayesian
estimates of model and pseudo-observations into the future, possibly beyond the present time
when no observations are available. Using conventional data assimilation, forecasts will use
the model-informed prior in the estimate of future moments. If the pseudo-observations
inform a likelihood that is more compact than the prior, the forecast of the mean of the state
may well be significantly different than the mean predicted via the prior only. This unique
capability of being able to make Bayesian forecasts persists in the DLF approach, as applied

to advection-diffusion problems.
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Figure 4.3: Posterior mean prediction as estimated by (a) the KF, and (b) the DLF, compared
to (c) the truth. Advection dominated case, with a = 0.01, initial data o0 = 1 and 6 = 0.5 and
spatially uncorrelated wave noise A = 0.05 and A = 0. Both filters use I = 20 observations
per observation time. The locations of observations are randomly selected grid points, marked
by black rings. Observation times are Tp = {0.05,0.1, ...,0.45}. The trajectories of pseudo-
observations are shown as black lines.  (In text mentions: p.119)
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selected grid points, marked by black rings. Observation times are Tp = {0.05,0.1, ...,0.45}.
The trajectories of pseudo-observations are shown as black lines.  (In text mentions: p.121)
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Figure 4.9: Posterior mean prediction as estimated by the (a) KF, and the (b) DLF, compared
to the (c) truth. Advection dominated case with o = 0.01, known initial amplitude o = 1
and spatially uncorrelated wave noise A = 0.05 and A = 0. The models use an incorrect
initial phase of § = 0.25 as opposed to the initial amplitude of the truth 8 = 0.5. Both filters
use I = 20 observations per observation time. The locations of observations are randomly
selected grid points, marked by black rings. Observation times are Tp = {0.05,0.1, ...,0.45}.
The trajectories of pseudo-observations are shown as black lines.  (In text mentions: p.122)
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Figure 4.14: Average (a) RMS, (b) Mass, (c) CoM errors and (d) Calibration of KF (blue),
DLF (red), across 50 runs for spatially correlated phase speed noise A = 0.05, A =1, varying
difusion a =€ {0,0.001,0.01}) and observations at I = 10,20 and 40 random locations at
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