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1Introduction and Conclusion

In this work we studied computer simulations of colloidal dispersions. We particularly
simulated sticky spheres and rods with a Brownian dynamics algorithm and analyzed their
capability to form percolating porous networks with the rheological properties of a gel.
The motivation to study these systems with respect to their gelation-properties originally
came from Ullrich Siems, who was working on computer simulations of spherocylinders,
i.e. rods [1] for quite some time, and Bastian Trepka, who grew EuO-based nanorods in
order to produce aerogels.

Figure 1.1: Photographic image of a gelated dispersion of Eu2O3-benzoate nanorods [2]

When growing these nanorods Bastian Trepka observed, that they and their solvent
formed a gel once the aspect ratio (ratio between length and width of a rod) grew larger
than ≈ 20. A picture of one of these gels can be seen in figure 1.1. The primary idea of
this thesis was to extend Ullrich Siems simulation program so far, that we can gain some
insight into Bastian Trepka’s gelated systems and hopefully reproduce them.
During the course of this work we will first give a short reminder of the physical and
computational basics necessary to interpret our results in the chapters 2 and 3. Chapter
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1 Introduction and Conclusion

4 will give a detailed overview of all the simulations we conducted, including all neces-
sary parameters to eventually reproduce our results. Finally chapter 5 is a comprehensive
presentation and evaluation of our results. There, in section 5.1, we will take a look at
our simulations of spherical particles. With these simulations we reproduced the results on
gel-forming particles by Santos, Campanella and Carignano [3] in order to test our program
and methods. Chapter 5.2 then holds all the results concerning our simulations of sticky
rods including an analysis of their rheological properties and the topology of the generated
networks. We use chapter 6 to compare these results to the experimental data collected by
Jacob Steindl with Bastian Trepka’s gels. Ultimately chapter 7 contains a short list of ideas
and suggestions on how further research could be done using the data, tools and knowledge
accumulated during the fabrication of this thesis and during the studies preceding it.

Even though first comparisons to experimental results show little indication that the
model used by us is suitable to properly describe the gelated systems of Bastian Trepka,
which was our original intention, we deem our work to be an overall success and consider
our results very promising at least.
We were able to reproduce the paper of Santos, Campanella and Carignano [3] in every
aspect we intended and extended their results by a large margin from spheres to even more
complicated systems of sticky rods.Furthermore, we further were able to clearly observe
an connection between the aspect ratio and the density of rods to their capability to form
porous, percolating networks, a result, which in general is well established [4], but to our
knowledge was never before observed in systems of spherocylindrical colloids interacting
via a Kihara-like potential, that were used by us. Our analysis of the topological structure
of these percolating networks shows interesting results and might give useful insights in
comparable structures or be used to automatically compare pictures of real gels among
each other and to results of simulations as well.
Finally the rheological analysis shows us that we were actually able to simulate several
systems of sticky rods that exhibit the characteristic properties of a gel.

All in all this work proofs that our tools and methods are functional and can be used to
simulate gelated systems on the basis of sticky rods. Starting from our work here, there a
plenty of paths wide open to be followed in future projects.
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2Physical Basics

In this chapter we will discuss the physical basics necessary to understand the further course
of this work. First an overview of colloids and colloidal systems will be given, followed by
a summary of Brownian motion. In order to define gels in section 2.4 we will introduce
the storage and loss module in section 2.3. In the last section of this chapter then we will
discuss the trajectories of spherocylinders in a shear flow, called Jeffery-orbits.

2.1 Colloids

A colloid is a mixture of two substances one of which is microscopically dispersed in the
other. A colloid constitutes two phases, the dispersed phase and the continuous phase.
This is an essential difference to a solution, where solute and solvent only constitute one
phase. It is very common to refer to the dispersed substance alone as colloid, or if that
substance consists of distinguishable entities as colloids. In this case the continuous phase
is called the dispersion medium. From here on we will also use this terminology and speak
of colloidal system, if we want to refer to the mixture of dispersed substance and dispersion
medium. [5]
Historically the use of colloids dates back as far as the earliest records of human civiliza-
tion. Cave painting in Lussac-les-Châteaux (France) who are around 15000 years old and
writings about the Egyptian pharaohs, dating back as early as 3000 B.C. were created
using colloidal pigments. In fact many of mankind’s earliest inventions like paper, pottery,
soap or other cosmetics require even today the manipulation of colloidal systems.
Colloidal science dates back as early as the middle of the 19th century, when Francesco
Selmi(1877-1881) first described the characteristics of the "pseudosolutions". In 1861
Thomas Graham(1805-1869) then coined the term "colloid", which is Greek for glue, em-
phasizing the low rate of diffusion and lack of crystalline order in these pseudo solutions
Due to this low diffusion rate Graham determined the lower bound for the size of colloids
to be around 1nm. Also considering the failure of colloids to sediment under the influence
of gravity (at least for reasonably long times) he was further able to determine an upper
bound for the colloid size of around 1µm. These size limitations are still often seen as
additional condition in the definition of colloids.[6]
With the discovery of Brownian motion (compare section 2.2) colloidal science further es-
tablished a relation between theoretical physics and the descriptive chemistry of that time
creating a gateway to physical chemistry and statistical mechanics. Due to their already
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2 Physical Basics

frequent use through many industries (paints, ceramics, gels, food, cosmetics,...) and their
abundance in living organisms (polymers, DNA, blood,...) the importance of colloids in a
modern technological society is almost self-evident.[6] (Since coffee also is a colloid suspen-
sion the role of colloids in sustaining our civilization can hardly be overestimated.)
To get a more hands-on impression of the characteristics of colloids some examples are
listed in table 1. They are sorted by the state of matter (solid, liquid, gas) the colloid and
the dispersion medium are in.

Examples

Name Colloid Medium Biological Technical

Colloidal sol Solid Liquid muddy water Paint, Ink, Sol-Gel

Emulsion Liquid Liquid
biological membranes

fat digestion
(milk,butter,...)

Drug delivery,
emulsion

polymerization

Foam Gas Liquid Vacuoles Soap foam

Aerosol Solid Gas Smoke, Pollen porous plastic

Aerosol Liquid Gas Clouds Hair spray, Smog

Solid suspension Solid Solid Wood,Bone Composites

Porous material Liquid Solid Oil reservoir rock, Pearl High impact plastics

Solid foam Gas Solid Pumice, Loofah Styrofoam

Table 1: Examples for Colloids in different states of matter [6]

The colloids discussed in the rest of this work will be solid spheres and spherocylinders
dispersed in highly viscous fluids. The spheres are characterized by their radius, while
the spherocylinders, which are cylinders with half-spheres of same the radius attached to
both flat ends, are characterized by their radius and the height of the cylinder, also called
the line segment. Figure 2.1 shows a depiction of such a spherocylinder of total length L,
radius σS and line segment l. These sizes are related by l = L − σS. The ratio p = L/σS

is called the aspect ratio.
The motion of these spheres and spherocylinders is governed mainly by Brownian motion.

A phenomenon, which will be further explained in the following section.
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2.2 Brownian Motion

Figure 2.1: 2-dimensional schematic depiction of a spherocylinder with total length L, radius
σS and line segment l. The 3-dimensional spherocylinder can be constructed by
rotation the above picture around its line segment. [7]

2.2 Brownian Motion

The study of Colloidal particles is in many ways rooted in the study of Brownian Mo-
tion. This phenomenon of the irregular, seemingly inexhaustible motion of small particles
suspended in fluids inherited its name from the botanist Robert Brown (1773-1858), who
nowadays is often falsely said to be the first person to discover these ubiquitous fluctuations
in particle trajectories. [8]
In fact it appears that the Brownian motion of small grains and pollens was observed
very soon after the invention of the microscope.[9] Browns main contribution was to dis-
cover that the same motions were also performed by inorganic materials, ruling out the
widespread idea that living organism were causing the observed trajectories. When Brow-
nian motion was subsequently even observed in gas bubbles in fluid reservoirs enclosed
by crystals it became very clear that an explanation of this effect had to be found within
physics rather than within biology.
It took several years and experiments to rule out external effects, such as vibrations or tem-
perature gradients between the fluids and their surroundings and many others as a source of
the particle motions and recognize Brownian motion as a phenomenon completely inherent
to the fluid itself. Yet it was not until 1905, 78 years after Browns first experiments, that
Albert Einstein(1879-1955) published his papers on Brownian motion linking the effect to
the known phenomenon of diffusion. Diffusion describes the distribution of fluids within
other fluids over time.[8]
The effect was first examined by Thomas Graham in 1833 for the distribution of mixtures
of gases[10]. A few years later, in 1855, Adolf Fick was able to derive the following diffusion
equation governing the time evolution of the concentration of a fluid:

∂c

∂t
= D∆c, (1)
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2 Physical Basics

where D is the diffusion constant and ∆ the Laplace-operator in the d dimensions, in which
the fluid expands.[11]
Einstein was able to show, that this equation does not only determine the evolution of
a concentration, but also the statistic of a single particle over time.[12][13] To make this
connection one simply interprets the concentration c(x⃗, t) of all particle as the probability
of a particle to be found at the place x⃗ at time t. From this it is easy to derive that the
mean square displacement of a single particle is given by ⟨x⃗⟩ = 2dDt. 1

Marian Smulochowski(1872-1917), who had been working on the topic since 1900, but
not published anything till 1906, came up with the same result for the mean square dis-
placement. He assumed that, while all particles were moving with a velocity of constant
absolute value, the direction of each particle’s velocity would change constantly due to
collisions with the fluid molecules. These collisions happened so fast, he suggested, that
they were not visible for the human eye, and all that could be observed was the seemingly
completely random Brownian motion. [14]
Since their results were in accordance with experimental findings Brownian motion could
now be described as the statistic interaction of the suspended particles with the molecules
of the surrounding fluid.
In 1908 Paul Langevin published an equation of motion for a Brownian particle.[15] Since
this equation is the basis for all our simulations, we will have a closer look at its derivation
and some solutions in the next section.

2.2.1 Langevin-equation

The following derivation is loosely based on [16].
To derive Langevin’s equation of motion for a Brownian particle, we assume that the
motion of its center of mass is governed by Newtons equation of motion:

m
dv⃗

dt
= F⃗ (t), (2)

where F⃗ (t) is the total force acting on the suspended particle, i.e. all forces due to external
sources as well as all forces caused by the fluid itself.
For the time being we assume that there are no external forces acting on the particle, so
that F⃗ corresponds solely to the forces due to the interaction between the particle and the
fluid.2
From experimental data we know that particles in a fluid with an initial mean velocity v⃗0
come close to rest(,up to fluctuation,) after a certain amount of time due to friction. For
fluids with a small Reynolds number (Re ≪ 1) we further know, that this friction can be
modeled by a friction force

F⃗sto = −ζv⃗ (3)

1To see this one simply integrates d
dt ⟨x

2⟩ =
∫
Rd x⃗

2 d
dtcdx

d =
(1)

∫
Rd x⃗

2D∆cdxd =
2xP.I.

2dD
∫
Rd cdx

d = 2dD.
2External forces can be reintroduced by replacing F⃗ by F⃗ + F⃗ext in the end.
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2.2 Brownian Motion

linearly depending on the negative velocity. ζ is called the friction coefficient and depends
on the geometry and the orientation of the particle as well as on the viscosity η of the
surrounding fluid. Stokes’ law states that for a sphere of radius a this coefficient is given
by ζ = 6πaη. However in a more general setting ζ can be a symmetric 2-tensor [17]. In
accordance with standard notation we assume from here on that ζ is a scalar. 3

If we assume F⃗Sto was the only contribution to F⃗ , the solution of equation (2) would be

v⃗(t) = e−
ζ
m
tv0 (4)

and thus v⃗ as well as ⟨v2⟩ would both converge towards zero as t goes to infinity. The latter
is a contradiction to the equipartition theorem according to which ⟨v2⟩ = dkBT

m
should be

true as the system goes to equilibrium.
To fix this deficit we add an additional random Force δF⃗ (t) to our force and obtain the
Langevin-equation

m
dv⃗

dt
= −ζv⃗ + δF⃗ (t). (5)

Like in Smulochowki’s approach this random force can be interpreted as the change in
momentum due to collisions with the fluctuating fluid molecules.
Experimental data suggests that on average the force is indeed given by equation (3).
To implement this in our model we demand ⟨δF⃗ (t)⟩ = 0. This can be done without
loss of generality, due to the fact that every non zero mean force could be interpreted
as external force. We further demand that δF⃗ (t) is not autocorrelated for times greater
than the mean time between to collisions of two fluid molecules with the particle τ0, i.e.
⟨δF⃗i(t1)δF⃗j(t2)⟩ = 0 for all times t1, t2with|t1 − t2| < τ0.
Since the relevant time scale of the system τr =

m
ζ

usually exceed τ0 by multitudes (τr ≫ τ0),
we actually assume that τ0 → 0 and thus model δF⃗ (t) as general white noise with

⟨δF⃗i(t1)δF⃗j(t2)⟩ = 2Bδ(t1 − t2)δij. (6)

The last simplification we introduce to δF⃗ (t) is that all higher momenta be zero, i.e. we
assume that δF⃗ (t) is Gaussian white noise. Since δF⃗ (t) is the result of a very large amount
of independent collisions of the particle with fluid molecules, whose mean square momentum
is bounded by the equipartition theorem, this very strong assumption can be interpreted
as a consequence of the central limit theorem and is therefor thoroughly justified.
As of now all that remains to be determined is the constant B in equation (6), which will
be achieved by exploitation of the equipartition theorem. The general solution to equation
(5) can be obtained by variation of constants and is given by

v⃗(t) = e−
ζ
m
tv⃗0 +

∫ t

0

e−
ζ
m
(t−t′) δF⃗ (t′)

m
dt′. (7)

3If ζ was a 2-tensor, most of the calculations below are exactly the same, if the following replacements
are made:
1
A → A−1 for any 2-tensor A and e(·) → expM (·), where expM is the matrix exponential.
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2 Physical Basics

Now let vp(t) be the projection of v⃗(t) onto one direction.4 If ζ does not depend on the
time (or at times scales short enough to assume exactly that), inserting vp(t) into the
equipartition theorem results in

kBT

m
= ⟨v⃗p2⟩ = e−

2ζ
m

tvp(0)
2 +

B

ζm

(
1− e−

2ζ
m

t
)
. (8)

As times goes to infinity the first and the last term in this equation go to zero. Taking this
limit and solving for B gives us

B = ζkBT. (9)

Equation (9) is often referred to as fluctuation-dissipation-theorem as it describes the
equilibrium between dissipative friction and the thermal noise due to particle fluctuation.
As stated at the beginning of this section we can reintroduce external forces simply by
replacing F⃗ by F⃗ + F⃗ext. The result is the Langevin equation with external forces:

m
dv⃗

dt
= −ζv⃗ + δF⃗ (t) + F⃗ext. (10)

F⃗ext can depend on time, external fields and other Brownian particles.
In cases where ζv ≫ mdv

dt
or t ≫ m

ζ
we can simplify this equation further by neglecting the

inertia terms. The equation we obtain is the overdamped Langevin equation

v⃗(t) =
1

ζ

(
δF⃗ (t) + F⃗ext

)
. (11)

This overdamped Langevin equation is the foundation of the Brownian Dynamics algorithm
used in all our simulations and further described in section 3.2. One can interpret this
equation by assuming that due to the high friction the equilibrium velocity is reached
within an infinitely small amount of time and hence there is no acceleration. Interestingly
the force couples to the velocity here, unlike in standard Newtonian dynamics, where the
force applied to a particle couples to the particle’s acceleration.
If a particle has rotation degrees of freedom additional to the movement of his center of
mass, these rotation degrees of freedom will also perform Brownian motion. In such a case
the collisions with fluid molecules also cause a stochastic changes in angular momentum and
thus a torque δM⃗(t) that, like the stochastic force δF⃗ (t), can be modeled as Gaussian white
noise. Exactly analogous to our considerations for the Force we obtain an overdamped
Langevin equation:

de⃗

dt
=

1

ζr

(
δM⃗(t) + M⃗ext

)
× e⃗, (12)

4If ζ is a tensor, we would choose the principal axis of ζ here. As a consequence ζ hast to be replaced by
its corresponding eigenvalues in the equations (8) and (9) and B depends on the chosen axis.
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2.3 Storage and loss shear modulus

where M⃗ext is an external torque, caused by external fields or other particles, e⃗ is a unit-
vector associated with the orientation of the particle and ζr is the friction coefficient cor-
responding to the rotations, which like before can be tensor-valued. [16]
Since we will usually talk about diffusion constants rather than friction coefficients from
here on, we will shortly introduce the connection of the two. By calculating the mean
square displacement via the diffusion equation (1) and via the Langevin equation (5) and
comparing the results one can see the relation

D = kBTζ
−1. (13)

Even though both can be 2-tensors, it will be sufficient to talk about their eigenvalues
along principal axes from here on.
Throughout this chapter, that the time evolution of the orientation decouples from the
time evolution of the center of mass. These assumptions are not valid in general. However
it was shown in [18], that the assumption is valid for all particles with orthogonal planes
of mirror symmetry through their center of mass. Since all particles discussed in this work
fall into this category the use of these assumptions was legitimate.

2.3 Storage and loss shear modulus

As the properties of many materials, in particular gels, do highly depend on their flow
properties, but also on their structural properties, methods are needed to measure the
first without destroying the latter. One possible way to do so is to apply small amplitude
oscillatory shear to the probe. In experiments this is usually done in a cone-plate or a Cou-
ette geometry, where the cone/plane oscillates sinusoidally Ω(t) = Ω0 cos(ωt). This causes
a shear rate γ̇(t) ∝ cos(ωt) and a strain γ(t) ∝ 1

ω
sin(ωt) that both are also sinusoidal.

Consequentially the stress response of the system can also be represented by a sinus curve.
For a solid body this stress response is according to Hooke’s law directly proportional to
the strain, i.e. σ(t) ∝ sin(ωt). The deformation is immediate. This behavior is called ideal
elasticity.
An ideal fluid on the other hand reacts with an delay. Its internal stress is proportional
to the shear rate σ(t) ∝ cos(ωt). The proportionality constant between σ and γ̇ is the
dynamic viscosity.
In general materials are neither ideal solid bodies nor ideal fluids. In this cases the stress,
while still sinusoidal with frequency ω, does not coincide with neither the strain nor the
shear rate, but is given by the following superposition

σ(t) = γ0 [G
′(ω) sin(ωt) +G′′(ω) cos(ωt)] , (14)

where γ0 is the maximal amplitude of the oscillatory strain. The term G′(ω) is in phase with
the strain and is called the storage modulus. It is proportional to the elastic energy stored
during the process of shearing. The out of phase term G′′(ω) is called the loss modulus and
represents elastic energy dissipated through the system. Their ratio G′′/G′ = tan(δ), called
the loss tangent, is low (≪ 1) for solid like materials and large (≫ 1) for liquid-like fluids.

9



2 Physical Basics

It can further be stated, that in solid-like materials G′ and G′′ are almost independent
of the shear frequency, while in liquid like materials G′ is proportional to ω2, while G′′ is
proportional to ω.
We should note, that equation (14) of course only makes sense as long as the stress depends
linearly on the amplitude γ0. This parameter region is called the linear viscoelastic regime.
In this regime G′ and G′′ should be independent of the maximum strain γ0.

[19]

2.4 Introduction to Gels
Jellies from cooked down meat or from fruit juice cooked with sugar are solid-like dispersion
and have been part of our households for centuries. Chemists knew as far back as the 19th
century of several other systems capable of forming organic and inorganic jellies. Thomas
Graham studied the replacement of water with other liquids in jellies of silicic acid and
coined the term gel.
For technical applications gels play a particular important role in pharmaceutics, food
industry and many parts of engineering. The extraordinary properties of so called aerogels
also increasingly gain significance in many branches.
It is due to the reason, that it is much easier to identify a gel than to define what a
gel actually is, that many different definitions of the term gel are around. As theoretical
approaches cover the hole scope of what might be practically considered a gel we chose a
phenomenological approach.[20]
Many definitions agree that a gel consists of a coherent dispersed percolating system or
network of at least two phases, of which at least one is liquid. It is further commonly
established that gels, unlike e.g. Newtonian fluids, can carry their own weight long enough
for humans to observe. While not completely solid they have solid-like properties.
Described in terms of storage and stress moduli, we expect tan(δ) ≪ 1 on time scales
accessible for the human eye. On that same scale G′ should be close to independent of ω.
Summa summarum a gel in the further context of this work will be defined by the following
properties:

1. formation of percolating networks of two or more types of particles, of which at least
one is fluid.

2. existence of an extended plateau in G′ (independence of ω)

3. solid-like behavior tan(δ) ≪ 1 on the same interval as G′ exhibits a plateau.
[20][19]

2.5 Jeffery orbits
If a voluminous sphere is suspended in a shear flow, the flow on one side of the sphere
is faster than on the other, leading to a rotation of the sphere. Since all our simulations
ignore the orientation of spheres due to their symmetry, we also ignore this effect.
However lacking one of the rotational symmetries of a sphere spherocylinders actually start
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a precession movement due to this effect, which is why it can not be ignored so easily. This
precession causes spherocylinders with fixed center of mass onto so call closed Jeffery
orbits. These trajectories are depicted in figure 2.2. [21] Jeffery figured out formulas for
these orbits for rotation ellipsoids surrounded by fluids with Re ≤ 1 in 1922. If the unique
half axis of such an rotation ellipsoid has length a and its orientation is described in the
spherical coordinates φ and ϑ the Jeffery orbits are completely determined by the ratio of
the half axis re =

a
b
, where b is the length of the two non-unique half-axis, the shear rate

γ̇ and the initial orientation of the ellipsoid. In formulas the orbits are given by

φ(t) = arctan

(
re tan

(
t− t0
T

))
(15)

ϑ(t) = arctan
(
C(t0)

(
r2e cos

2(φ(t)) + sin2(φ(t))
)− 1

2

)
,

where C(t) = tan(ϑ(t))
√

r2e cos
2(φ(t) + sin2(φ(t)) and T = 1

γ̇

(
re +

1
re

)
. [21][22]

In Jeffery’s original paper another equation describing the rotation of the ellipsoid around
its symmetry axis is added to the equations (15). Since our simulation does not keep track
of the orientation around the symmetry axis we ignore it completely.
So far we discussed Jeffery orbits only for rotation ellipsoids. To expand them also to
spherocylinders we realize, that we can write re = a

b
in terms of the main moments of

inertia Jmax and Jmin of the ellipsoid. It is then given by re =
√

2Jmax

Jmin
− 1.

Writing re like this one can show, that spherocylinders in a shear field also obey the
equations (15). This is quite plausible due the fact that spherocylinders have the same
symmetries as rotations ellipsoids and the geometric differences between the two are only
marginal, however it was also shown analytically by Bretherton in 1962.[23]
In the simulations we have integrated Jeffery orbits with an Euler-integrations of the equa-
tions (15). As comparison we also implemented shear flow, where the spherocylinders are
treated solely as line segments, that do not perform Jeffery orbits.

3Computational Methods

In this chapter we will introduce and discuss all computational and mathematical methods
necessary to understand the simulations, whose results are presented over the course of
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ϑ = π
2

x(φ = 0)

ϑ = 0

y(φ = π
2
)

Figure 2.2: Depiction of Jeffery-orbits for prolate spheroids, ellipsoids, spherocylinders. The
particles’ center of mass is situated at the origin of the coordinate system. Its
orientation is completely defined by the angles φ and ϑ. [22]
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3.1 Reduced Units

this work, and the evaluation of said results. We will start off with an introduction to
reduced units, right before the Brownian dynamics algorithm is introduced in section 3.2.
After that we will give an overview of the different boundary conditions, interactions and
forces and their implementation in the simulation program. Finally we will have a look
some of our evaluation tools, namely the cluster-algorithm, radial and angular distribution
functions and topological analysis of simplicial complexes.

3.1 Reduced Units

It is common practice in numerical simulations to describe systems in reduced units rather
than SI- or natural units. This is usually done by picking as many independent parameters
as necessary to describe a given system and normalizing the units these parameters are
measured in to scales characteristic to this systems. All other units are then expressed in
terms of these normalized units, usually by keeping up the relations between units known
from SI-units. The reduced unit of velocity of a system would for example be given as
quotient of the reduced unit of length and the reduced unit of time. Independent in this
context means that neither unit of the chosen parameters can be expressed in terms of the
others. For example in a system characterized by time, length and velocity, only two of the
three units are independent, because either of the three can be expressed using the other
two. This means if we were to set the unit of length to be equal to the size of the system
and the unit time to be the mean time it takes for a particle to move past this length, the
unit of velocity would already be determined by the mean velocity of a particle in that
system.
This procedure ensures, that all physical law are invariant under the choice of units.
In this work and all our simulations we have chosen the diameter of a colloidal sphere σk,
its friction coefficient ζ and kbT as fundamental parameters. In reduced units all three of
them will be normalized to 1. All further units can be derived from them. The conversion
formulas can be found in table 2. Reduced units are furnished with an ∗. The use of
reduced units has become very common due to the fact, that a lot of different physical
systems look essentially alike, when these units are used, a large system with big particles
might be just a rescaled version of a smaller system. Due to this fact a single simulation
could possibly describe many different systems.
A further reason is of purely computational interest. Because reduced fundamental units
are usually chosen to normalize characteristic scales of the system, most sizes measured in
these units do not stray very far from 1. In fact most values deviate by only 2-3 orders of
magnitude at most, which drastically reduces numerical errors, that occur when handling
very big or very small numbers.[24][25]
From here on we will only use the reduced units from table 2. For the sake of better
readability however we will drop the ∗.

13



3 Computational Methods

Physical variable Conversion rule
Diameter of a unit-sphere σ∗

k = 1
Temperature kBT

∗ = 1
Friction coefficient of a unit-sphere ζ∗ = 1

Diffusion constant D∗ = ζ
kBT

D

Time t∗ = D
σ2
k
t

Length l∗ = 1
σk
l

Energy E∗ = 1
kbT

E

Force F ∗ = σk

kBT
F

Velocity v⃗∗ = σk

D
v⃗

Density ρ∗ = σ3
kρ

Table 2: Conversion table from non-reduced units to reduced units for the physical variables
relevant to this work. Reduced units are furnished with an ∗.

3.2 Brownian Dynamics
The algorithm at the core of all simulations in this work is the so called Brownian Dy-
namics algorithm. It simulates the dynamic and time evolution of multi particle systems
governed by the overdamped Langevin equation (11). This is achieved by performing an
Euler-Maruyama integration of this equation for every particle, which will be explained in
this section. For better understanding, we will shortly and very vaguely explain how one
could derive such an integrator.5
For that numerical integration the time interval of interest is discretized and hence de-
scribed by finitely many time steps t0, ..., tN , where N is the number of time steps calcu-
lated. We will denote the distance between two consecutive time steps by ∆t.(Theoretically
∆t can depend on the time steps we are looking at.)
We can now obtain the position of the i−th particle at the j−th time step by integrating
equation (11):

r⃗i(tj) = r⃗i(tj−1) +
1

ζ

tj∫
tj−1

(
F⃗ (t′) + δF⃗ (t′)

)
dt′. (16)

The force F⃗ , which in (11) was called F⃗ext, includes all particle interactions as well as
external forces. It will usually depend on the position of all other particles.
The first term under the integral is quite well-behaved and can numerically be solved
with any integrator of choice. In Brownian dynamics an Euler-integrator is chosen, i.e.

we approximate that term by
tj∫

tj−1

F⃗ext(t
′)dt′ ≈ F⃗ext(tj−1)∆t. The second term under the

5Note that this has to be understood more like a way to make the algorithm plausible, rather than a
rigorous proof. The layout of argumentation is based on Anton Lüders Bachelor thesis. [26]
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3.2 Brownian Dynamics

integral however is a bit more difficult due to δF⃗ being a random distribution. However
since we know that δF⃗ (t) is normal distributed and uncorrelated we can interpret this
integral as an average over independent normal distributions. It is not a very hard task to
show that such an average again results in a normal distribution, whose mean and variance
are also given by the respective averages. Since we know the mean and variance of δF⃗ we
can now easily figure out, that the mean of the second integral has to be zero, while its
variance is given by

〈 1

ζ2

tj∫
tj−1

δF⃗ k(t′)dt′


2〉

=
1

ζ2

tj∫
tj−1

dt′

tj∫
tj−1

⟨δF k(t′)δF k(t′′)⟩dt′′ = 2D∆t. (17)

We used k here to enumerate the components of δF⃗ . (Note that for non isotropic particles
D can depend on k.)
Numerically this is implemented by replacing the second integral by a standard random
vector R⃗ rescaled with the factor

√
2D∆t. Hence our Brownian dynamics integrator is

given by

r⃗i(tj) = r⃗i(tj−1) +
D

kbT
F⃗ (tj−1)∆t+

√
2D∆tR⃗.. (18)

We also have replaced 1
ζ

by D
kBT

in the last step. The random numbers can be generated
with the Box-Muller method from equally distributed (pseudo-)random numbers.
If the simulated particles are anisotropic, like the spherocylinders used in this work, and
therefore D is given by a tensor, we solve equation (11) in the basis given by the principal
axes of D and, in this basis, also obtain the integrator apart from the fact, in every
component of equation (18) D is replaced by its corresponding eigenvalue.
For the a spherocylinder the principal axes of D coincide with its rotation-axis e⃗∥ and two
more arbitrary vectors e⃗⊥,1 and e⃗⊥,2, that form an orthonormal basis with e⃗i. We will call
the two different eigenvalues of D D∥ and D⊥. Then the integrator for r⃗i = (r∥, r⊥,1, r⊥,2)
can be expressed like

r∥(tj) = r∥(tj−1) +
D∥

kBT
F∥(tj−1)∆t+

√
2D∥∆tR∥ (19)

r⊥,k(tj) = r⊥,k(tj−1) +
D⊥

kBT
F⊥,k(tj−1)∆t+

√
2D⊥∆tR⊥,k k ∈ {1, 2}. (20)

This is the standard integrator of a Brownian dynamics algorithm. [27][28]
Starting from the overdamped Langevin equation for the orientation of an anisotropic
particle (12) we obtain a very similar integrator, which for the case of a spherocylinder
then can be expressed as

e⃗∥(tj) = e⃗∥(tj−1) +
Dr

kBT
M⃗(tj−1)× e⃗∥(tj−1)∆t+

√
2Dr∆t (R⊥,1e⃗⊥,1 +R⊥,2e⃗⊥,2) , (21)
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3 Computational Methods

where Dr is the rotation diffusion constant for spherocylinders, M⃗ is the torque in the
spherocylinder and R⊥,k are standard normal distributed random numbers.
The various diffusion constants, that occurred in this section, and that are relevant in our
simulations depend only on the surrounding fluid and the aspect ratio of the spherocylin-
ders.6 Approximate values for these constants can be calculated using the formulas in table
3.

Colloid Diffusion constant Formula
Sphere D 3πησk

(Auxiliary constant) D0
kBT
ηL

Spherocylinder(orthogonal) D⊥
D0

2π

(
ln(p) + 0.839 + 0.185

p
+ 0.233

p2

)
Spherocylinder(parallel) D∥

D0

2π

(
ln(p)− 0.207 + 0.980

p
+ 0.133

p2

)
Spherocylinder(rotation) Dr

3D0

πL2

(
ln(p)− 0.662 + 0.917

p
+ 0.05

p2

)
Table 3: Approximate formulas for the diffusion constants for spheres and spherocylinders, as

derived in [28]. The Diffusion constants depend on the diameter σK of a sphere, the
diameter σs of a rod, the aspect ratio p = L

σs
of a rod and the viscosity η of the dispersion

medium. Comparison with experimental data has shown that these formulas are valid
for p ∈ [2, 30]. [29]

3.3 Periodic Boundary Conditions

Even though the calculation force of modern computers has made impressive advances over
the last few decades, their capability to simulate real word systems is still very limited,
due to the shear amount of degrees of freedom in such systems. In order to still simulate
system sizes comparable to the thermodynamic limit boundary conditions that mimic in-
finitely big systems need to be introduced. A common choice are periodic boundary
conditions. [24]
The basic idea behind periodic boundary conditions is to simulate an infinitely big space by
plastering it periodically with copies of a smaller, computationally feasible simulation box,
as depicted in figure 3.1. Thus for every particle in the simulation box there are infinitely
many copies of itself in the copies of the simulation box, that cover the real space. Nu-
merically this is implemented by identifying opposite boundaries of the simulation box. A
particle leaving the simulation box to the right, re-enters the box from the left at the same
instant, exactly like in the real space it would leave one copy of the box to the right and
enter the next copy from the left. Periodic boundary conditions also make the adaption
of the distance of particles a necessity. Most commonly in this setting the distance of two
particles is taken to be the shortest real space distance between any two copies of these
particles. As a consequence no distance (in one spacial dimension ) can exceed half the

6This is of course only true in reduced units
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3.3 Periodic Boundary Conditions

Figure 3.1: Illustration of periodic boundary conditions, the nearest image convention (dashed
box) and a cut-off radius (green circle)

box length.
With the adaption of the distance, there obviously needs to be a coherent modification in
the calculation of particle interactions, which usually depend on the distance.
A naive, even though possibly complicated, approach would be to write the interaction
forces as infinite series, that actually considers the interaction with all copies of the parti-
cles. However, not only is this numerically often not feasible, the series do not necessarily
converge for a lot of common forces, such as for example gravity or the coulomb force. A
more practical approach is the nearest image convention. If this convention is applied, the
interactions are only calculated for a particle and the closest copy of every other particle.
A similar idea is to introduce of a cut-off radius rc and then simply ignore the interac-
tion between particles, which are further apart than rc. The closest image convention is
a significant improvements in terms of simulations times, even more through the cut-off
radius, but also come with increasing numerical errors. These errors are sufficiently small
though for the short-range interactions that occur in our simulations, which is why both
method were applied in this work. [24][25] What short-range in this context means and
some examples of short-range interactions will be discussed in section 3.4.

3.3.1 Lees-Edwards boundary conditions

Lees-Edwards boundary conditions are an extension to standard periodic boundary
conditions in order to account for laminar flow, as it might for example be induced, if the
system is under shear stress. [30][25]
Let us for example imagine a simulation box, exposed to a Couette flow, such that a fluid
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(a) (b)

Figure 3.2: Illustration of Couette flow with standard periodic boundary conditions (a) and
Lees-Edwards boundary conditions (b).

particle at the bottom of the box might remain still, while a particle at the top of the
box moves with a velocity of u⃗. If we applied standard periodic boundary conditions to
this system, a particle just below the top of the box would move with a velocity of almost
u⃗, while a particle only slightly higher, at the bottom of the first copy of the simulation
box would hardly move at all. Viewed in the real space the flow profile in this scenario
looks like a sawing blade rather than the profile of a Couette flow, as is illustrated in figure
3.2 (a). Lees-Edwards boundary conditions fix this nuisance by giving the copies of the
simulation box a velocity equal to ku⃗, where k is a whole number, that depends on the
distance of the copy to the simulation box.7 [25] An illustration of the moving copies of
the simulation box, as well as the resulting Couette-flow profile is depicted in figure 3.2(b).
In our simulations Lees-Edwards boundary conditions were applied, whenever shear stress
was applied to the system.

3.4 Forces and Interactions

In this section we will discuss all the forces particles were exposed to, during simulations
related to this work. All relevant forces in this context are either due to particle-particle
interaction or due to a periodic shear flow. We will discuss both cases separately.

3.4.1 Particle-Particle Interactions

All the particle-particle interactions simulated in this work can be derived from a pair
potential function V (r), that only depends on r = |ri−rj| the distance of the two particles
in question. In order to use periodic boundary conditions consistently, all these interactions
need to be short ranged, which means

∫
R3\Br(0)

V (|r|)dr⃗ < ∞ for an r > 0. Br(0) is here an

7Only the distance orthogonal to planes of constant flow velocity need to be considered to determine k.
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3.4 Forces and Interactions

open Ball of radius r with center at the origin. The fact that this integral is finite implies
that the numerical error caused by the closest image convention and the introduction of
a cut-off radius are negligibly small, if the box, or respectively the cut-off radius, are
sufficiently big.
The basis for all pair potentials used here is the Lennard-Jones potential with a cut-off
radius rc = 2.5. It is given by

VLJ(r) =

{
4ε
((

σ
r

)12 − (σ
r

)6) for r ≤ 2.5σ

0 for r > 2.5σ
. (22)

This potential has an repulsive part (r < 21/6σ), that prevents particle overlap, as well as
an attractive part (21/6σ < r < 2.5σ). Particles interacting through such a potential can
be interpreted as attractive spheres with a radius of approximately σ. The spheres are
not completely hard, yet an overlap decreasing the distance far below σ is rater rare. The
possible overlap and the power of the attraction is proportional to ε.
From the Lennard-Jones potential we derive another potential, a hard- core Lennard-Jones
potential [3], for sticky spheres by combining a hard-core potential with the Lennard-Jones
potential. The hard-core potential is used for radii smaller than an inner radius r0. For
radii between r0 and r0 + 2.5 a standard Lennard-Jones potential is used. The resulting
potential is given by:

VHCLJ(r) =


∞ for r < r0

VLJ (r − r0) for r0 ≤ r ≤ 2.5 + r0
0 for r > 2.5 + r0

, (23)

and can be interpreted as spheres with a hard core, covered in a soft sticky shell. Com-
pared to the hard core radius the region allowing overlap, as well as the attractive region
of the Lennard-Jones potential have become much smaller, hence the picture of a sticky
spheres becomes more accurate then that of attractive spheres. We interpret the radius
of spheres interacting with this potential to be r0 + 1, which is the distance where the
potential is zero. This makes the unit of length in our simulations σ = r0 + 1 as well.
The last potential we will need during this work is a Kihara-Lennard-Jones potential for
spherocylinders. [31] The potential itself looks exactly like the Lennard-Jones potential
introduced in equation (22). Instead of inserting the center of mass distance r of sphero-
cylinders, as we did for spheres, we will insert the shortest distance between the surface of
spherocylinders d:

VKLJ(d) = VLJ(d). (24)

Since the calculation of the distance between the surface of two spherocylinders can be
quite involved a short discussion of the topic can be found in the appendix in section A.1.
Due to the fact that this interactions acts along the line of shortest distance and that the
cut off radius is short compared to the aspect ratios of spherocylinders, we also interpret
spherocylinders with this pair potential as sticky rods, rather than attractive ones.
The hard core Lennard-Jones potential could of course be used as basis for a Kihara-like
potential as well.
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3.4.2 Small amplitude oscillatory shear
(Determination of storage and loss modulus)

In order to determine the storage and loss modulus of a system of colloids we need to apply
small amplitude oscillatory shear. We do this by applying an external force in x-direction
linearly depending on the distance in y direction to the middle of the box :

Fsaos = ζγ̇(t)(y − ȳ)e⃗x. (25)

ȳ is here the y-coordinate of the middle of the simulation box and γ = γ0 sin(ωt) the
periodic strain with maximum amplitude γ0 and frequency ω. Together with Lees-Edwards
boundary conditions this force leads to a strain, as it would be caused by a periodically
changing Couette-flow.[32]
To determine the storage and loss modulus, we have a look at the xy-components of the
virial stress:

σxy =
−1

2N

N∑
k,l=1

(xk − xl)F⃗ kl
y , (26)

where xj is the x-coordinate of the j-th particle and F⃗ ij
y is the y-component of the particle-

particle interaction between the i-th and the jth particle. (Since we assume to be in
an overdamped system any further velocity dependent terms in the Virial tensor can be
neglected.)[33]
Since we expect a periodic response to the periodic shear the resulting stress data will be
fitted using a sinusoidal function

σ(t) = σ0 sin(ωt+ δ). (27)

Comparing this function with the equations (14) we can see quickly (trough application
of the addition theorems for trigonometric functions) that the storage and loss modulus is
respectively given by

G′(ω) =
σ0

γ0
cos(δ)

(28)

G′′(ω) =
σ0

γ0
sin(δ).

3.5 Cluster algorithm
The percolating networks, which gels consist of, consist of connected clusters of particles.
While, of course, not every bigger cluster is such percolating network, we can definitely
rule out the existence of such a network if there are no big clusters to be found. In this
way clusters of a certain size are a necessary, yet not sufficient, condition for the formation
of gels.
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As one indicator for percolating networks the size of clusters, and in particular the mean
cluster size c̄ and the maximum cluster size cmax, were central observables in this work.
For the course of the work we define clusters in the following way:

We call two colloids a and b connected if their distance is smaller than 1.5σ,
i.e. d(a, b) < 1.5σ or if other colloids c1, ..., cn (n ∈ N∪ {∞}) exist such, that the distance
between a and c1, the distance between ci and ci+1 and the distance between cn and b are
each smaller than 1.5σ, i.e. d(a, c1) < 1.5σ, d(ci, ci + 1) < 1.5σ and d(cn, b) < 1.5σ. The
connected components in this definition of connectednessed are called clusters.

The algorithm we use to determine the clusters in our systems works as follows. At first a
random particle a is chosen, marked as " sorted " and added to a new cluster list. Then all
particles within a distance of 1.5σ or less are also marked as " sorted " and then appended
to the same cluster list as a. We then move on to ne next particle b in this cluster list and
mark and append all unmarked particles, that are closer to b than 1.5σ. We keep going to
the next particle on the list, adding and marking as " sorted " unmarked particle within
cluster distance, till the end of the list is reached. At this point this list contains all the
particles of one cluster.
After one cluster list is finished, a new one is created, starting with an unmarked colloid,
if there are any. The whole process is repeated until all particles are marked as " sorted "
and thus belong to a cluster. [34]
The mean cluster size c̄ can now be calculated as the average length of the cluster lists,
while the maximum cluster size cmax corresponds to the maximum length of all cluster
lists.

3.6 Radial distribution and angular correlation
To get further insight into the structure of the clusters in our system we calculated the
radial distribution function g(r), which is defined as

g(r) =
1

ρN

N∑
i,j=1;i ̸=j

δ(r − |rij|). (29)

In this definition ρ = N
V

is the particle density in the simulation box, and rij is the distance
vector between particle i and particle j. To make sense of this numerically, we counted the
number of particles with distance r + dr to a particle i normalized the result with respect
to the volume of the shell around that particle with radius r + dr and then averaged over
all particles. Or as formula

g(r, dr) =
1

ρN2

N∑
i

N i
k

4πk2dr3
for (k − 1)dr ≤ r < (k)dr, (30)

where N i
k is the number of particles within a shell of inner radius (k − 1)dr and outer

radius kdr around the particle i. Thus the term 4π(k2dr2)dr is the volume of this shell
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(for small dr). This spherical shell we are looking at here is the k-th shell from the center.
The additional factor 2 in the first term is needed because otherwise we would count every
particle twice in equation (30) compared to equation (29).
For spherocylinders we used the distance of the centers of mass to calculate the radial dis-
tribution. Since, other than spheres, spherocylinders are anisotropic we further calculated
the angular correlation function for those systems. It is given by

ga(r) =
1

Nρg(r)

N∑
i,j=1;i ̸=j

P2(cos(ϑij))δ(r − |rij|), (31)

where ϑij is the enclosed angle between the spherocylinders i and j and P2(x) =
3
2
x− 1

2
is

the second Legendre-polynomial. Numerically this is calculated via

ga(r, dr) =
1

Nk

N∑
i,j=1;i ̸=j

P2(cos(ϑij))⊮ [(k−1)dr,kdr )(r) for (k − 1)dr ≤ r < (k)dr, (32)

where Nk = 1
2

N∑
i=1

N i
k is the total number of pairs of particles with a distance between

(k− 1)dr and kdr and ⊮ [(k−1)dr,kdr )(r) is the characteristic function of [(k − 1)dr, kdr ), i.e
it is 1 of r is within the interval and zero otherwise.
Since P2(x) is positive for x close to ±1 and negative for x ≈ 0 ga(r) is positive, if
spherocylinders with center of mass distance of r are on average oriented parallel. If
spherocylinders of this distance are on average perpendicular on the other hand ga(r)
becomes negative. Due to the fact that the integral from −1 to 1 over P2(x) is zero, ga(r)
is also around zero, if there is no preferred orientation between spherocylinders of distance
r. [28][25]

3.7 Topological analysis
To determine the porosity of the percolating networks we used a method called persistent
homology to analyze the topology of these networks. While we merely used it to count
differently sized holes in our networks, the method is ,theoretically, capable of far more
detailed analysis of the topology of data sets.
We will give a short description of the ideas involved. More detailed explanations can be
found in [35] [36] and [37]. The latter also is the tutorial for the matlab tool "javaplex",
which is an implementation of the algorithm described below.
It is a common problem in algebraic topology to determine the topological invariants of sim-
plicial complexes. A simplicial complex is a set of, possibly different dimensional, simplices.
A n-dimensional simplex is a polytope with n+1 corners, i.e. a 0-dimensional simplex is
a dot, a 1-dimensional simplex a line segment, a 2-dimensional simplex a triangle and a
3-dimensional simplex is a tetrahedron and so on. The topological invariants of interest
are n-dimensional holes. For our purposes it is enough to picture 0-dimensional holes as
connected components, 1-dimensional holes as literal holes and 2-dimensional holes as en-
closed volumina. As a example we can look at a 2-dimensional sphere and a 2-dimensional
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Figure 3.3: Illustration on how to count 2-d holes in a torus. The two circles (red and vi-
olet) can not be continuously retracted, i.e. the torus must exhibit non trivial
topology. Picture from https://de.wikipedia.org/wiki/Torus#/media/File:
Torus_cycles.svg

torus. Both have one connected component, i.e. one 0-dimensional hole. The sphere has
no holes in its surface, all circles we put in the surface can be retracted to a dot without
breaking them. The torus in the other side has two 1-dimensional holes, since there are
two classes of circles that can neither be smoothly transformed into each other nor into a
dot, as is depicted in figure 3.3. Both the sphere and the torus have one enclosed volume.
Counting the holes of a simplicial complex is done using so called homology groups 8 and

reduces to determining the dimension of the kernel of a matrix. This procedure is readily
implemented in javaplex and will not be discussed in further detail.
The question for us is now how to turn our data into a simplicial complex, without losing
to much of the structural information.
For the sphere systems this was quite simple. We simple used the centers of the spheres
as nodes for the simplicial complex and added edges between two nodes, if their euclidean
distance was smaller then a certain length d. To count the number of holes of an diam-
eter of around 2, d = 2 was chosen, the complex constructed and its holes counted with
javaplex. For spheres this method is quite accurate.
For spherocylinders neither the shortest nor the center of mass distance are very well suited
for this kind of procedure, because in both cases we would count the wrong number of holes
as is visualized in figure 3.4.
Instead we placed equally spaced spheres along every spherocylinder and then applied the
8The dimension of the n-th homology group can roughly be thought of as the number of n-cycles modulo

the n-boundary of a given structure
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3 Computational Methods

Figure 3.4: Examples why neither the shortest distance nor the center of mass distance between
spherocylinders is suited to properly capture the topology of systems of spherocylin-
ders. With regard to their center of mass distance, all three of the systems above
are equivalent (spherocylinders on the very right are perpendicular to the paper
plane.), despite having completely different topology. With regard to the shortest
distance between spherocylinders the first two stay equivalent.

same algorithm as for spheres. Since the computing time of the algorithm highly depends
on the number of dots and the distance d up to which edges are added, we had to reduce
the number of spheres along a spherocylinder, when calculating the number of holes for
bigger d. To count the number of holes, with a diameter around half the aspect ratio of
the rods for example, we could only approximate a rod with a chain of three spheres. For
d = 1.5 we used a sphere every unit-length, i.e. the number of spheres equals the aspect
ratio, and for d = 10 we placed a sphere every 10 unit length, i.e. the number of spheres
is p/10 + 1.
Obviously some information is lost, when the rods are replaced by spheres this way, which
is why the number of holes calculated for the spherocylinder systems has to be taken with
a grain of salt. We expect them to be in the right order of magnitude, but not exact results.
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4Simulations

To enable attempts to reproduce our studies we will use this chapter to discuss all simu-
lated systems with regard to all necessary parameters.
All simulations were carried out with the simulation program initially written by Ullrich
Siems. [1] The program is written in C++ and is object oriented. The program is still
part of current work and while by far the greatest contribution still is Ullrich Siems’, many
small additions and minor corrections have been implemented by Anton Lüders, Jacob
Holder and myself, during the time I have been working with it.

The program starts by initializing a simulations box, which can be chosen to be 2− or
3−dimensional and periodic or non-periodic in any direction. (For this work all boxes were
3−dimensional and periodic in all directions.) In the next step a fixed number of particle
positions (spheres or spherocylinders) are randomly distributed in this box or read from a
file to create an initial state. In this procedure only initial states with negligible overlap
of particles are allowed. Starting from this initial state the Brownian Dynamics algorithm
runs for a set number of time steps with a fixed time step width ∆t.

As already mentioned we have done simulations with spheres and spherocylinders. In the
first ones a hard-core-Lennard-Jones (23) potential was used to describe the interactions
between spheres. We performed simulations with varying volume fraction Φ and varying
hard-core radius r0. The size of the simulations box was kept at 20 × 20 × 20 for all
parameters. A complete list of all non-constant parameters can be found in table 4 .
For the spherocylinder systems a Kihara-like Lennard-Jones (24) potential was used to
calculate the particle-particle interaction. We varied the volume fraction Φ and the aspect
ratio p of the spherocylinders. The simulations boxes had a size of 100 × 100 × 100 for
all aspect ratios lower or equal to 20 and 250 × 250 × 100 for all greater aspect ratios.A
complete list of all non-constant parameters can be found in table 5.
After an appropriate relaxation time the equilibrated systems all were subjected to small
amplitude oscillatory shear with several maximum strains γ0 and a frequencies ω. In
these last simulations Lees-Edwards boundary conditions were used rather than periodic
boundary conditions.
In all simulations the interactions strength was set to ε = 5 and the cut-off radius remained
at rc = 2.5. To calculate the volume of a particle, we used its effective diameter following
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the Weeks-Chandler-Anderson theory:

σeff =

∞∫
0

[
1− e−Vrep(r)/kbT

]
dr,

where Vrep is the repulsive part of the pair potential, with its minimum shifted to coincide
with zero.

Colloids Spheres

Φ [%] 6.5 13
r0 0 9

∆t
[
σ2

D

]
7.5e− 5 1.0e− 6

γ0 [%] 0.1 0.21 0.46 1 2.15 4.62 10 21.5 46.2
ω
[
D
σ2

]
1.0e3 2.15e3 4.62e3 1.0e4 2.15e4 4.62e4 1.0e5 2.15e5 4.62e5

Table 4: All values for non constant parameters used in simulations related to this work. In rows
not separated by a line only the parameter pairings actually shown in the corresponding
column were used. Between rows separated by a line all possible combinations of
parameters were simulated.

Colloids Spherocylinders

Φ [%] 0.26 0.31 0.41 0.52 0.63 0.73 0.84 0.94 1.05 1.57 2.09
p 10 20 30 40 50

∆t
[
σ2

D

]
1.0e− 5

γ0 [%] 0.1 0.21 0.46 1 2.15 4.62 10 21.5 46.2
ω
[
D
σ2

]
1.0e3 2.15e3 4.62e3 1.0e4 2.15e4 4.62e4 1.0e5 2.15e5 4.62e5

Table 5: All values for non constant parameters used in simulations related to this work. All
possible combinations of parameters were simulated.

26



5Results

In this section we will present and discuss all our simulations and the extracted data. We
will start off with the simulations concerning spherical particles interacting via a Lennard-
Jones potential or a hard core Lennard-Jones potential respectively. The chapter will follow
closely the paper by Santos, Campanella and Carignano [3]. We reproduced their main
results in order to proof the functionality of our program and methods.
After that the systems of spherocylinders are presented and evaluated in similar fashion.

5.1 Evaluation of the simulations of sticky spheres

As just mentioned this section will discuss the results of our simulations concerning spher-
ical colloids. After a short qualitative description of the final systems we will dive deeper
and have a look at the evolution of the potential energy of the system, the mean and max
cluster sizes, the radii of gyration and the topological properties of the systems. In the last
subsection we have a look at the storage and loss moduli of one of the systems.
In total we consider four systems of spherical particles, as was already described in table
4. They differ in their volume fraction, as for two systems the spheres cover 13% of the
volume while in the other two only 6.5% are occupied, and in their hard core radius, i.e.
two systems interact with a standard Lennard-Jones potential while the other two interact
via a hard core Lennard-Jones potential with r0 = 9. Of course the Lennard-Jones poten-
tial can be interpreted as having a hard core radius of r0 = 0. The interaction strength
was kept at ε = 5 in all four systems.
All simulations ran for a time of at least t = 300 σ2

D0
, which also is the time at which we ap-

plied the small amplitude oscillatory shear and at which all further analysis of final states
was conducted.
A picture of these final states can be seen in figure 5.1. In these pictures we can also
already spot quite easily the differences between the four systems. In both systems with a
volume fraction of only Φ = 6.5% we can see that the spheres do not percolate throughout
the system. At least not in all spacial directions. In fact the system with r0 = 0 is still
connected in one of three dimensions. The clusters in the system with lower volume frac-
tion and r0 = 9 on the other hand are all well separated.
The systems with Φ = 13% show higher connectivity. In fact the system with r0 = 9 per-
colates in every spacial direction, while the r0 = 0 system still percolates in two directions.
Comparing these pictures with the results in [3] we would expect the latter system to break
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its bonds in the remaining two dimensions and assemble in a more a less sphere-like ge-
ometry. Due to the periodic boundary conditions the state depicted in figure 5.1 is rather
stable and we did not see these percolation breaks on time scales as large as t = 1800 σ2

D0
.

Compared to the system with r0 = 9 and Φ = 13% we can definitely see a tendency of the
r0 = 0-spheres to assemble in as little space as possible, while the r0 = 9-spheres concen-
trate rather locally, thus making up a porous, sponge-like network spanning throughout
the whole system.
Considering its percolation properties and overall appearance the system with Φ = 13%
and r0 = 9 appears to be our most promising candidate to be considered a gel. A look at
its storage and loss modulus in section 5.1.4 will confirm this first impression.
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5.1 Evaluation of the simulations of sticky spheres

Φ = 6.5% Φ = 13%
r 0

=
0

r 0
=

9

Figure 5.1: Systems of spherical particles (1000 particles on the left and 2000 on the right)
with different interaction potentials (Lennard-Jones potential, r0 = 0 top hard-
core-Lennard-Jones with r0 = 9 bottom) after a simulation time of t = 300. All
remaining simulation parameters are equal for each picture and can be found in
table 4.

5.1.1 Evolution of potential Energy

In this chapter we have a closer look at the potential energy of the four systems over the
course of a time period of t = 300 σ2

D0
. The actual time evolution is depicted in figure 5.2.

We can see more or less an exponential decay in the energy for all systems. While this
means, that the energy of the systems is not completely constant yet and might never be,
we believe the fact that all changes in energy for the later times depicted to be insignificant
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enough to consider the systems at equilibrium, i.e. all analysis conducted on the final state
is not significantly influenced by the particles relaxing to an equilibrium state. We are
aware, that if a system would stop to percolate in any direction, consequently there would
be a sudden drop in the overall energy not fitting to this exponential decay. Since the
simulations of the systems, that are still percolating in some direction were running even
longer then the time depicted in figure 5.2 without this happening, we confidently consider
this event rare enough to still consider the systems sufficiently equilibrated.
The differences in the energy of the four systems can quite easily be explained: There
are twice as many particles in the systems with Φ = 13% then there are in the systems
where the volume fraction is Φ = 6.5%. Since the energy of the system is the sum over all
pair-potentials, we expect the energy to be approximately proportional to n2, hence the
factor between the low density systems and the high density ones should be around 4. We
actually see a factor between 3 and four. It seems plausible, that in the higher density
cases more particles do not interact at all, because there is only limited space in direct
proximity to every particle, compared to the low density cases, which could be the reason
why our factor is slightly lower than expected.
The differences in energy of the systems with different hard core radius r0 are likely due
to the fact that the systems with r0 = 9 tend not to concentrate in one place as much as
do the other systems, hence less of the particles are actually interacting.
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Figure 5.2: Potential Energy of spheres interacting with a Lennard-Jones (r0 = 0) or a hard-
core-Lennard-Jones potential depicted over time. For both potentials systems of
different volume fraction Φ were simulated. The standard Lennard-Jones particles
were simulated for much longer than depicted. The sparsity in their data points
arises from bigger time steps used in these simulations

5.1.2 Evolution of maximum and mean cluster size

Since gels usually consist of percolating networks we expect the particles of the gel to be
mostly in one, or not more than a few clusters. To figure out which of the sphere system
match this description we had a closer look at the time evolution of the normalized mean
cluster size c̄ and the normalized maximum cluster size. We normalized with respect to
the particle number, i.e. the product c̄N is the actual mean cluster size and analogous for
cmax.
The results for the mean cluster size are depicted in figure 5.3, while the time evolution of
cmax can be seen in figure 5.4.
We realize in both plots, that the system with r0 = 0 and Φ = 13% reaches c̄ = cmax = 1
after so little simulation steps that our data output intervals were to large to even capture
a state were these values are smaller.
Comparing in particular the curves for the system with r0 = 9 and Φ = 13% (the blue
curve in both figures) we get a feeling for the fact that the mean cluster size is a lot more
susceptible for fluctuation than the maximum cluster size. This appears quite plausible if
we imagine all particle to be in one cluster, i.e. both c̄ and cmax would be 1. If now a single
particle were to leave the cluster, cmax would still be around 1, if there are sufficiently
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many particles in the system, while c̄ would drop by half.
This is exactly what happens in the system described by the blue curve. After a relatively
short time almost all particles are joined in one cluster, making cmax ≈ 1. Over time single
particles however leave and rejoin this main cluster making c̄ oscillate between 1 and 0.5,
which gives the resulting curve between these two values, after smoothing over a few time
steps.
Looking at the green curves we can see that the system with r0 = 0 and Φ = 6.5% takes a
quite long time to assemble all particles in clusters. What in fact happens is, that smaller
clusters are formed quite quickly. Then these cluster move very slowly on their own until
they randomly collide and merge with each other.
The last system did not proceed further than the first described step within the simulated
time, hence it is still separated into several clusters.
We are aware that cluster size itself is not a sufficient indicator for percolation. However
the other way around systems of insufficient cluster sizes cannot percolate.
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Figure 5.3: Mean Cluster of spheres interacting with a Lennard-Jones (r0 = 0) or a hard-core-
Lennard-Jones potential (r0 = 9) depicted over time. For both potentials systems of
different volume fraction Φ were simulated. The standard Lennard-Jones particles
were simulated for much longer than depicted. The sparsity in their data points
arises from bigger time steps used in these simulations. The blue and violet curve
were smoothed using Gnuplot’s "smooth bezier" function.

32



5.1 Evaluation of the simulations of sticky spheres

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300

c m
a
x

t
[
σ2

D

]

r0 = 9 Φ = 6.5%
r0 = 0 Φ = 6.5%
r0 = 9 Φ = 13%
r0 = 0 Φ = 13%

Figure 5.4: Max Cluster cmax of spheres interacting with a Lennard-Jones (r0 = 0) or a hard-
core-Lennard-Jones potential (r0 = 9) depicted over time. For both potentials
systems of different volume fraction Φ were simulated. The standard Lennard-
Jones particles were simulated for much longer than depicted. The sparsity in their
data points arises from bigger time steps used in these simulations. The blue and
violet curve were smoothed using Gnuplot’s ’smooth bezier’ function.

5.1.3 Topological analysis of the final state

As gels are often described as spongy or porous networks we conducted a topological
analysis on the final states as described in section 3.7. We counted the number of holes
nh
1.5 in our networks that have an approximate radius of 1.5σ and the number of holes nh

3

with an approximate radius of 3σ. The results are depicted in table 6. These results show
the trend, that the system with Φ = 13% and r0 = 9 tends to be more porous as the one
with the same volume fraction, but r0 = 0.

5.1.4 Small amplitude oscillatory shear

In the last view sections we figured and confirmed, that out of our simulated systems of
spheres only the system with a volume fraction Φ = 13% and a hard-core radius of r0 = 9
actually is a porous percolating network, and hence a potential candidate for a gel. To
determine whether this system is actually gelated we have a look at its storage and loss
modulus.
The storage and loss modulus were calculated by applying small amplitude oscillatory
shear and determining the phase difference between the strain and the stress as explained
in section 3.4.2 To properly compare G′ and G′′ we first need to find the linear viscoelastic
region, i.e. the regime of γ0, in which the moduli depend linearly on the strain.
To do so we plotted the dependency of G′ on the maximum strain γ0 for various frequencies
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r0 Φ nh
1.5 nh

3

0 6% 2 0
9 6% 2 0
0 13% 1 1
9 13% 10 2

Table 6: Number of holes of radius 1.5σ and 3σ in the final state of the simulations of particles
with different density and different r0.

We are well aware, that these results are only of minor interests, if only so few systems of
such small box size are viewed, due to lack of statistics. This analysis will be a little more
interesting in the spherocylinder systems, since those are significantly larger, which is why
we wanted to shortly discuss these results here anyway.

in figure 5.5. We can see there that for small γ0 up to 1% or 2.5% G′ starts out constant
and for greater values decays, hinting towards the fact, that for γ0 ≳ 2.5% the strain starts
to destroy the structure of the system. To determine its rheological properties before that
happens we have a look at the frequency dependence of G′ and G′′ for strains of 1% and
2.15% in the plot depicted in figure 5.6.
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Figure 5.5: Storage modulus G′ dependency on maximum strain γ0 for the system with
r0 = 9 and Φ = 13% for frequencies ω = 100000 (violet), ω = 1000(green) and
ω = 1000(blue). The simulations from which G′ was derived were performed at
t = 300 .
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Figure 5.6: Storage modulus G′ and loss modulus G′′ dependency on the frequency ω for the
system with r0 = 9 and Φ = 13% for γ0 = 1% (empty points) and γ0 = 2.15%(filled
points) . The simulations from which G′ was derived were performed at t = 300 .

We can see there that for small frequencies and both depicted strains the systems start
out with G′(ω) < G′′(ω), suggesting that on very large timescales we would expect rather
liquid-like than solid-like behavior.Even though due to the fact that tan(δ) = G′′/G′) is
still very close to 1 in this regime we can assume that liquid-like in this case would still be
far from an ideal fluid. Somewhere between ω = 2.15 · 103 and ω = 4.62 · 103 there exists
a gel-point ω0 where the inequality between G′ and G′′ flips, i.e. G′(ω) > G′′(ω) for all
ω > ω0. From that point on the distance between G′ and G′′ steadily increases for higher
frequencies, giving us an actual time scale, where our systems behaves predominantly solid-
like.
These results match well with measurements of weak gels in experiments and also the
results shown in [3], where more detailed analysis of similar systems was conducted.
We take this as evidence that our implementation of small amplitude oscillatory shear, as
well as the Lees-Edwards boundary conditions work well and the general method can be
applied to systems of spherocylinders as well.
For the final part of the discussion of spherical particles we depicted the loss tangent of the
system in dependency of the maximum strain γ0 and the frequency ω in figure 5.7. Keeping
in mind that the linear viscoelastic regime ranged up to ≈ 2.5% we can see similar behavior
to the previous plot for all strains within that regime, i.e. tan(δ) ⪅ 1 for frequencies around
4 · 103 and solid like behavior on all smaller time scales.
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Figure 5.7: Loss tangent tan(δ) dependency on frequency ω and maximum strain γ0for the
system with r0 = 9 and Φ = 13%.The simulations from which G′ was derived were
performed at t = 300.
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5.2 Evaluation of the simulations of sticky rods

After having tested our simulation program, in particular the periodic shear forces and the
implementation of Lees-Edwards boundary conditions added by myself to Ullrich Siems
program, by reproducing the results for spheres in [3] as discussed in the previous sections,
we now went on to a vaster study of systems of spherocylinders.
The contents of this chapter will be ordered in the same way they were in the discussion
of the results of our simulations with spheres, i.e. we will start out in this section by
qualitatively discussing some of the final states of the simulations, then move on to have
a closer look at the time evolution of the potential energy and the maximum and mean
cluster sizes of the systems. After that we proceed to investigate whether there is any order
in the orientation of the spherocylinders in the final state. Finally we have a look at the
rheological properties of the systems to see, whether any of them have gel character at all.
All in all we started simulations with spherocylinders for 55 combinations of aspect ratio p
and volume fraction Φ. Most of these simulations ran for a time of t = 5000 σ2

D0
. All of them

interacted via a Kihara-like Lennard-Jones potential with interaction constant ε = 5. The
aspect ratios ranged between p = 10 and p = 50 and were incremented in steps of 10. The
volume fractions were picked to be between Φ = 0.26% and Φ = 2.09%. The exact values
can be found in table 5. The spherocylinders with p ≤ 20 were simulated in a periodic box
of size 100× 100× 100, while all systems with p ≥ 30 were simulated in a larger periodic
box of size 250× 250× 100.
As stated in [28] and 2.2 the diffusion constants we used for spherocylinders only match
experimental results for p ≤ 30. Unfortunately this makes some of our system rather a toy
model and less comparable to experimental data.
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Figure 5.8: Systems of spherocylinders of different aspect ratio (p = 10 on the left and p = 30
on the right) and volume fraction (Φ = 0.26 at the top,Φ = 0.52 in the center and
Φ = 1.05 at the bottom) interacting via a Kihara-like Lennard-Jones potential after
a simulation time of t = 5000. Further similar simulations with the parameters
shown in table 5 were conducted as well.

In figure 5.8 we depicted a few samples of pictures of the final states of these simulations.
In the left column pictures of spherocylinders with an aspect ratio of p = 10 can be seen.
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From top to bottom the volume fractions are 0.26%, 0.52% and 1.05%. In the right column
we see picture of spherocylinders with an aspect ratio of p = 30. Note that even though
these rods appear to be of similar length than the ones in the left column, they would be
3 times longer if the simulation boxes were to scale. The volume fractions in the right
column are the same as in the left one.
While these six pictures are just a small sample of all the simulations we ran, they are
nicely suitable to notice and discuss a few trends in the formation of networks in these
systems, that will be quantified later on.
We can see for example quite easily how the size of the connectedness components in the
systems increase with increasing volume fraction. The same effect can be seen, when going
from smaller to larger aspect ratio. The cluster sizes in the systems with p = 30 are way
bigger than in the ones with p = 10.
The extend of this effects goes so far that the spherocylinders with p = 30 start from a
percolating network, with only few particles not being a part of it, already at densities as
low as Φ = 0.52%. For the volume fraction of Φ = 1.05% this networks is spans throughout
the whole simulation box and includes every particle. For spherocylinders with p = 10 we
only witnessed almost all particles as part of one cluster for the greatest volume fraction
Φ = 2.06%, as can be seen later. This gives us already a strong hint towards the fact, that
also in our systems gelation is more likely to occur with increasing aspect ratio.
Before moving on to the quantitative discussion we want to guide attention to the cuboid-
like structures, consisting of a few layers of parallel spherocylinders, that can be seen in
the two lower density pictures with p = 10 encircled by an orange line. A more detailed
picture of one of these can be found in figure 5.9. We found formations like this not in
great number, but quite regularly in systems with an aspect ratio of p = 10 and a few
times in systems with aspect ratio of p = 20. If this trend were to be confirmed in further
studies, further simulations could be run on how to separate these cuboids from the bulk
of other clusters and later how such cuboids behave as colloids themselves.

5.2.1 Evolution of potential Energy

Like for spheres we will now have a look at the potential energy of the spherocylinder
systems over the course of the simulation time, which for most systems was t = 5000 σ2

D0
.

The actual time evolution is depicted in figure 5.10. While some of the depicted energy
evolution seem already to be close to constant a few unfortunately still change quite rapidly,
so that we can hardly confidently state, that all these system are at equilibrium.
There are two main reasons why we nevertheless proceeded our further analysis with the
final states of the simulation runs belonging to these partly not completely equilibrated
systems. The first of these reason is the fact that visual inspection of these states did
not exhibit major structural changes over most of the simulation time, so that we feel
sufficiently safe to say, that the analysis of cluster size, topology, and angular ordering will
not be significantly altered by further time evolution. We are aware, that this is not the
optimal scenario, but the second reason might make clear, why we went with it anyway.
This second reason is the excessive simulation time, needed to simulate many of these
systems. While the simulated time t = 5000 appears to be only a little more than 15
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Figure 5.9: Cuboid-like stack of spherocylinders as sometimes witnessed in systems with p ≤ 20.

times the time simulated for spheres, we actually had to calculate around 200 times more
simulation steps for spherocylinders than for spheres, due to the fact that the latter require
around 10 times smaller time steps to be properly simulated. Apart from this some of the
spherocylinder systems also contained more than twice as many particles as the largest
systems with spheres. All put together this lead to simulation times between four to ten
weeks. As this high run times were a hindrance for us not only in obtaining well equilibrated
systems, but also in some other steps of this work, the end of this chapter will contain some
discussion about attempts and ideas to solve this problem. Most unfortunately we were
not able to properly detect a pattern, which systems would not sufficiently equilibrate.
To find out how the final potential energy Ef of a system is related to its density and aspect
ratios we actually plotted this final energy as a function of these two parameters in figure
5.11. We can quite easily make out the pattern, that the final energy rapidly decreases
as the density increases and the aspect ratio decreases. Both trends are hardly surprising
since higher volume fraction, as well as smaller aspect ratio with constant volume fraction
both directly translate into an increase in overall particles, hence the potential energy, that
overall has negative sign decreases correspondingly.
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Figure 5.10: Time evolution of the potential energy of several systems of spherocylinders with

aspects ratios p between 10 and 50 and volume fraction Φ between 0.26% and
2.06% over a time of t = 5000 σ2
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Figure 5.11: Final potential energy Ef of spherocylinder systems for some Φ ∈ [0.26%, 2.06%]

and p ∈ [10, 50] after a simulated time of t = 5000 σ2

D0
.

5.2.2 Evolution of maximum and mean cluster size

To find possible candidates for gels among our simulations we first of all have a look at the
cluster sizes within the systems. The qualitative discussion of a few sample pictures at the
beginning of this chapter suggested, that there is a dependency linking greater cluster size
to a greater aspect ratio and a greater volume fraction.
This first impression turns out to be right, when we have a closer look at the data we
collected. To give a first impression of this phenomenon we depicted a plot of the time
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evolution of the normalized maximum cluster size of the simulations of spherocylinders
with aspect ratio p = 20 in figure 5.12. We can see there how all curves with a volume
fraction greater than Φ = 0.73% quickly and monotonously go towards 1, indicating that
almost all particles of the systems are part of the greatest cluster. All curves below this
density also rise, however do so much slower and come hardly as close to one, which means
in these systems there is still a significant number of particles, that do not belong to the
greatest cluster.
All in all it seems reasonable to say, the initial slope of this evolution as well as the final
value are both grow with increasing volume fraction.
Similar observations can be made, when looking at figure 5.13, where the evolution of
normalized mean cluster size over the same time interval is depicted. In this figure the
volume fraction is Φ = 1.05% for all the curves, while the aspect ratio ranges between
p = 10 and p = 50. It is again quite nicely to see how the growth rate and the final value
depend on the aspect ratio, as for example the system with p = 10 never reaches c̄ = 1, all
the other curves reach that value in the same order, that corresponds to the inverse order
of their aspect ratio, i.e. p = 50 first, then p = 40,etc..
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Figure 5.12: Evolution of the normalized maximum cluster size cmax between t = 0 and
t = 05000 σ2

D0
. The aspect ratio is constant at p = 20, while the volume frac-

tion ranges between Φ = 0.26% and Φ = 2.09%. The curves are smoothed to
suppress short term fluctuations.
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As last proof of these tendencies we determined the times tc̄ and tcmax for all simulated
systems. The points in time tc̄ and tcmax are respectively the first time c̄ and cmax exceed
the value 0.95 for the first time. Since very few systems fluctuate around this value for
a bit, it is not an optimal parameter to describe the point, where all particles are in one
cluster, yet it is a strong indicator.
The results for both times are depicted in figure 5.14. The previously suggested trends
can again be seen quite easily, as both cluster times decrease with growing aspect ratio
and growing density. We should say, that of course neither of these relations is particu-
larly surprising. Since a higher volume fraction implies that there are more particle in the
same volume, there are obviously also more particles in close vicinity to each other. Even
though greater aspect ratio on the other hand means less particles in the system, if keeping
a constant volume fraction, their effective volume (volume they can cover via translation
and rotation) grows with p3. Apart from that one can of course interpret a spherocylinder
with aspect ratio 20 as two connected rods with p = 10, which means more particles are
already part of a cluster by default.
This overall trend is well-known for rods [4] though to our knowledge was never shown for
the example of rods interacting via a Kihara-Lennard-Jones potential.
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square. in systems, where either time equals 5000 the respective cluster size was
never reached.

While in general a sufficient cluster size and percolation do not necessarily imply each
other after visual inspection of the final states of our systems we can confidently say, that
every system where mean or max cluster size one was reached within the simulated times
are actually wide-spread enough throughout the system to also be talking of percolation
in these cases.

5.2.3 Topological analysis of the final state

Like earlier for spheres we calculated the number of holes the clusters in our final sates
exhibit to have a quantitative measure how porous these networks actually are. We viewed
holes of a radius of approximately 10. The results are depicted in figure 5.15.
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The results for the systems with p = 10 have to be handled with caution, due to the
fact that the algorithm here cannot differentiate between a single spherocylinder and the
endpoints of two spherocylinders. This leads to scenarios, where the algorithm could
connect totally disconnected clusters and count holes in them. For p ≥ 20 this risk decreases
fast, partly because the algorithm approximates longer rods with more spheres and partly
because less disconnected clusters exist in the first place.
For all other systems we see a general increase in the number of holes nh

10 as the density
and the aspect ratios rise. This increase in porosity is a phenomenon we already witnessed,
when qualitatively discussing the sample pictures in the introduction of this chapter, hence
the overall trend is little surprising. Before moving on we would like to point the attention
towards the fact, that the number of holes in a cluster of spherocylinders can also be seen as
an indicator for how far throughout the system this cluster is spread, since tightly packed
spherocylinders do not allow any holes in their structure.
Combined with the knowledge of cluster sizes derived from figure 5.14 the distribution of
the number of holes in figure 5.15 makes the statement, that systems with only few cluster
actually percolate, at least plausible and confirms this exact claim we made after visually
inspecting these systems.

5.2.4 Angular correlation histograms

Now, after having a rough overview of which system form porous percolating networks,
we want to examine, whether any of these networks exhibit any orientational ordering or
whether the spherocylinders are just randomly distributed. To do so we had a look at the
angular distribution of the orientation of spherocylinders in dependence of the distance of
the center of mass in our systems.
Since we only have one sample for each pair of parameters we can, once again, only describe
some tendencies in the data, due to lack of statistics. Two exemplary plots for the systems
with p = 20 and p = 30 can be seen in figure 5.16 and figure 5.17 respectively.
.
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Figure 5.16: Angular correlation function g(r) depending on the center of mass distance r of
spherocylinders with aspect ratio p = 20 for volume fraction ranging between
Φ = 0.26% and Φ = 2.09%.
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The first thing that strikes the eye, when looking at these plots are the peak at r = 1
and the low point at r = p/2, which every curve seems to have to some extend. These
imply, that particles at a center of mass distance of r = 1 tend to be more parallel then
spherocylinders with greater distance and that particles with a distance of p/2 are more
likely to be orthogonal to each other. Both make perfect sense. The first phenomenon
because for spherocylinders with a center of mass distance of 1 one of two degrees of
freedom of the relative orientation are frozen, hence parallel orientation becomes more likely
compared to pairs of particles, whose relative orientation can still change in two dimensions.
The second one, because at a distance of p/2 parallel orientation would either cause overlap
of rods or no contact between them at all, whereas orthogonal orientation is still likely to
give contact between the rods without overlapping, hence making it energetically favorable.
Apart from these two extrema the angular distribution seems pretty independent of the
distance. Except for some fluctuations all curves seem to settle in on a value around or
slightly below zero, as the distance increases. The mentioned fluctuation are larger for
low density systems, suggesting that they are rooted in lack of statistics rather than any
ordering phenomenon.
In general it appears that systems of lower density tend towards a values slightly below
zero as the center of mass distance grows, while the systems with greater volume fraction
actually appear completely unordered at larger distance, hence go to zero. This could be
explained as being an en tropically more favorable state, since the effective volume between
particles is reduced this way, but since the values are already quite small, lack of proper
statics in these system might as well be a just as suitable answer, till further simulations
were conducted.
All in all it feels safe to say that, particularly in the percolating systems, there is no
extraordinary ordering apart from effects dictated by the geometry of the spherocylinders.

5.2.5 Small amplitude oscillatory shear with and without Jeffery orbits

In the last few sections of this chapter we suggested and confirmed the impression that
porous percolating networks consisting of spherocylinders are favored by increasing volume
fraction and aspect ratio. (At least in the low volume fraction regime we are looking at. It
is quite clear that there are densities in which there is no more space for pores and every
cluster necessarily percolates.)
Now we want to see, whether any of these system exhibit the rheological properties of a gel,
i.e. whether there exist timescales, on which the storage modulus is significantly higher
than the loss modulus within the linear viscoelastic regime.
To do so we applied small amplitude oscillatory shear with several frequencies ω and
maximum strains γ0 to all systems. The exact values of γ0 and ω use can be found in table
5. We ran simulations, where the spherocylinders reacted as voluminous object, i.e. would
perform Jeffery-orbits in a linear shear, and also simulations, in which the spherocylinders
reacted like mere line segments to the shear force. We will refer to these two types of
simulations as "with Jeffery-orbits" and "without Jeffery-orbits" from here on.
To find possible candidates for gel-like networks we first calculated the loss tangent tan(δ)
for all sets of parameters. The results of this calculations are plotted in figure 5.18 with
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the actual figures being spread throughout the pages 49 to 52 for the simulations without
Jeffery-orbits and through the pages 74 to 77 for the simulations with Jeffery-orbits.
It turns out that the results with Jeffery-orbits are not significantly different from the
results without Jeffery-orbits, which is why for the sake of not having eight consecutive
pages of just pictures only plots for the latter are included in this chapter, while the other
ones can be found at the very and of this work. The minor differences between simulations
with and without Jeffery-orbits are hardly astonishing since the shear force did not exceed
small amplitudes and maintained direction only for small amounts of times, hence the
changes in orientation due to this force are also not expected to build up a lot. Due to the
differences between the two kinds of simulations we will focus our attention on simulations
without Jeffery-orbits from here on, even though every argument stays true if applied to
the simulations with Jeffery-orbits, which can be easily seen by comparing the respective
plots in figure 5.18 .
Probably the very first thing that strikes the eye, when looking at the plots belonging to
figure 5.18 is the vast lack of data for aspect ratios of p = 40 and p = 50. Since in these
plots all points, where the error of the fit required to calculate the loss tangent exceeded
20%, were left blank, this means that sinusoidal fit to the virial stress did not work very
well in these systems. A closer look into the data exhibits indeed, that the Virial stress for
these system is mostly dominated by random noise, rather than the periodic response to
the shear stress. An exemplary plot for one of these cases compared to a case where the
fit worked properly can be seen in figure 5.19.

(a) Actual figures to be found on pages 49 to 52.

(b) Actual figures to be found on pages 74 to 77.

Figure 5.18: The figures on the respective pages show the loss tangent’s tan(δ) dependency on
frequency ω and maximum strain γ0 for systems with aspect ratios ranging from
p = 10 to p = 50 and volume fractions ranging from Φ = 0.26% to Φ = 2.09%.
Strain was applied without implementation of Jeffery-orbits in (a) and with such
an implementation of Jeffery orbits in (b).
Every sub-plot shows the full range of frequency and strain for one set of aspect
ratio and volume fraction. White tiles represent parameter sets, for which the error
in the fit necessary to determine tan(δ), was higher than 20%.
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Figure 5.19: Example of a good and a bad fit for the determination of G′ G′′ and tan(δ)

One might suggest that the reason for this noise is, because these systems are not
completely equilibrated yet. This argument does not apply to all systems with p ≥ 40
though and at the same time the method worked fine for systems with p ≤ 30, which were
not at equilibrium either. (Note that it was stated earlier, that there was no clear pattern,
which systems equilibrated sufficiently.)
It might be possible that the angular momentum caused by the shear force, which becomes
greater with bigger aspect ratios, added up so much, that greater rearrangements in these
systems occurred, leading to a greater amount of noise. It might also play a role that our
diffusion constants for spherocylinder are only correct for aspects ratios smaller than or
equal to p = 30, hence making all systems with p = 40 and p = 50 a mere toy model
anyway. Being aware of this flaw in our data we move on to discuss the remaining cases.
The remaining data follows more or less one pattern: the loss tangent is almost constant
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⪅ 1 for γ0 ≳ 1% and frequencies ⪅ 104. This implies that, in these parameter ranges the
systems are all more or less behaving like a viscoelastic fluid slightly more solid-like than
fluid-like on average. For γ0 ⪅ 1% and ω ≳ 104 most systems are likely to have a loss
tangent of less than 0.01, hence clearly exhibit solid-like character.
It is very pleasant to see, that this is, up to fluctuations, the exact same picture we
witnessed earlier for spheres in figure 5.7. If anything the solid-like regions are more
distinct for spherocylinders then they were earlier for spheres.
In the context of this work it is kind of baffling, that neither form nor size of these two
parameter regions seem to depend on the aspect ratio or the volume fraction in any obvious
way. In fact the systems where the solid-like parameter scope is most pronounced are the
system with Φ = 0.26% and p = 20, the one with Φ = 0.52 and p = 10 and finally the one
with Φ = 0.74% and p = 20.
Since these systems are particularly distinct in their solid-like parameter region we are
going to have a closer look at them here. The respective final state of these systems are
depicted in figure 5.20.
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Figure 5.20: Three systems with the most pronounced solid-like behavior Depicted are the sys-
tem with Φ = 0.26% and p = 20 (top left), the system with Φ = 0.52% and p = 10
(top right) and the system with Φ = 0.74% and p = 20 (bottom).

While all of their loss tangents exhibit the same characteristics as our system of gelated
spheres only the last one (Φ = 0.74%, p = 20) is a percolating network. Hence of the three
it appears to be the only and overall the most promising candidate for a gelated system.
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Figure 5.21: Storage modulus G′ dependency on maximum strain γ0 for the system with
Φ = 0.74% and p = 20 for the frequencies ω = 1000(violet),ω = 10000(green)and
ω = 100000(blue). The simulations from which G’ was derived were performed at
t = 5000 and without Jeffery orbits.

We therefore will have a closer look at its storage and loss moduli in order to determine,
whether the linear viscoelastic regime of this system coincides with the parameter range
of solid like behavior.
The storage modulus G′ for this system in dependency of γ0 is depicted in figure 5.21 for
a few samples of ω between 1000 and 100000. Apart from one runaway point for ω = 100
(violet) at γ0 = 0.1% G′ appears to be more or less constant up to values of γ0 around 2%
or 3%, suggesting that for amplitudes below these values we can assume to be in the linear
viscoelastic regime. We should also note that G′ is about two magnitudes smaller than,
when we calculated it earlier for the sphere system. This can be explained by the density
of this system, that is about 20 times lower then earlier in the sphere system.

The frequency dependency of G′ and G′′ finally is depicted in figure 5.22. We depicted
it for γ0 = 1% and γ0 = 2.15%. We cannot see any gel point in this figure, i.e. the
loss modulus is for all frequencies we could get noise free data smaller than the storage
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the system with Φ = 0.74% and p = 20 for the maximum strains γ0 = 1% and
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modulus. Starting from frequencies around 104 and higher the loss modulus starts to drop
rapidly, so that we can definitely speak of solid like behavior on these time scales.
While this in theory would speak for a gelated system, we should nevertheless point out,
that the behavior of G′′ in this sample appears to be rather odd compared to the spherical
system, and does jump a lot over many orders of magnitude.

5.3 Discussion

Throughout this last chapter we could confirm that the existence of percolating porous
networks in systems of spherocylinders correlate with the density of the particles and their
aspect ratio. Within these networks we could not find any particular order of orientation.
After the first few sections one would assume that the occurrence of systems with the
rheological properties of a gel would also increase with rising volume fraction and aspect
ratio. Unfortunately our method appeared to produce mainly noise for p ≥ 40. Due to
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the diffusion constant only being realistic for p ≤ 30 it would have been better to ignore
systems with p > 30 all together and sweep the range of p = 2 to p = 30 more thoroughly.
Nonetheless we managed to actually find several systems that fit the criteria of a gel, thus
proofing, that our model can generate gel-like structures based on percolating networks
of spherocylinders. This is a successful extension of the results of [3] from spheres to the
more complicated systems of sticky rods.
It would have been nice to actually figure out a pattern according to which the rheological
properties of our systems depend on the volume fraction and the aspect ratio. Due to the
rather high fluctuations in the data depicted in figure 5.18 more statistics for our results
is needed, and hence more simulations should be run in the future.
In general a little more statistics would have been desirable for all results shown above.
Since we deem the results very promising so far we suggest that the corresponding simu-
lations will be conducted in the near future. Since some of the systems included in this
work require simulation times of two months and more we propose that further attempts
to decrease these run times are undertaken beforehand.

As conclusion of this chapter we will discuss a few attempts in that direction , that were
already made or that we suggest to be tested in the future.

5.3.1 Performance enhancement for spherocylinder simulations

Before I started using the simulation program written by Ullrich Siems, already used
linked-cells and Verlet-lists in order to speed up its performance. (The latter needed slight
modifications to be used in the context of spherocylinders.) The two methods combined
lead to the simulation times described a few sentences before. Without them these times
would be even higher.
Linked-cells can be used, when a cut-off radius for the interaction of particles is used. In
that case the simulation box can be divided into smaller boxes, with edges at least as long
as the cut-off radius, and interactions need only to be calculated for particles in the same
box or neighboring boxes. If the cut-off radius is sufficiently smaller than the simulation
box, this gives a significant speed up for the calculation of interaction. O(n2) → O(n).
When using Verlet-lists one keeps a list for every particle in the system, on which all par-
ticles within a distance of rcut + δ are kept track of.(δ is the Verlet constant and can be
chosen at will.) Only after a particle has moved a distance greater than δ these lists need
to be updated in order to calculate the correct interactions. This procedure also reduces
the number of particle-particle interactions that actually have to be calculated on average
drastically.
While both methods are very effective the more noteworthy contribution usually comes
from the linked cells. However for them to work effectively each cell together with its
direct neighbors needs to be smaller than the whole simulation box, i.e. in ever direction
of the box there need to be more than three linked cell. Unfortunately this very fact is was
makes them less useful, when applied for spherocylinders. The reason being that in these
cases the length of linked cells needs to be at least as long as p + rcut. So for linked-cells
to be an essential speed up when simulating long spherocylinders the simulation box needs
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to be sufficiently big, which assuming a constant volume fraction of particles requires an
increased number of spherocylinders. For long spherocylinders this increase in number can
eat up the initial increase in speed quite fast.
Obviously one standard way to increase performance would be an attempt to parallelize the
program and let multiple processors do the work, that currently one does. One standard
way to do this, which also is already implemented in the program, are, once again, linked
cells. Here each processor would calculate a system consisting of the particle in a block of
several linked cells. The processor only need to share the information about particles in
the boundary of this block. However if there are too little linked cells, every linked cell
becomes a boundary cell of its respective block. In this case the communication between
processors can need so much time compared to the actual calculations that one ends up
without a net gain in performance. This again is a problem for spherocylinders, since their
increase in numbers, which is needed to have sufficiently many linked cells for this kind of
parallelization to work, can eat up the performance gain very quickly again. (It might be
possible to get around this problem, when GPUs rather than CPUs are used to deal with
the vast amount of extra particles.)
In another attempt to parallelization we tried to let each Verlet-list be handled by a differ-
ent processor using OpenMP. However also in this attempt inter-processor communication
ate up the gain in performance.
We believe the reason for the failure in the last attempt to be mainly rooted in the simula-
tion program itself. While it is a very well-written program capable of many different tasks,
off all things this versatility might be its doom in this case. Grown over the years, through
work of a few different people the program grew more and more complex. Checking out
optimization reports from its compilation reveals, that there is little to none automated
vectorization or parallelization, due to the fact that the optimizer has difficulties to identify,
whether variables depend on each other, which makes very clear why so much interproces-
sor communication was needed in previous parallelization attempts.
Further this explains to great extend how Anton Lüders and Jacob Holder could realize
some significant speed ups by writing new programs, based on the same original program,
but specialized for only one of its task. With this in mind we would suggest the same
to be done for spherocylinder simulations as well and starting from there to try again its
parallelization through CPU or GPU, before many 3d-simulation of many spherocylinders
are run with the original program again. Obviously several other optimization methods
could also be tested. An attempt, that I personally deem promising, but never tested
would be a shift from the Brownian dynamics algorithm to the very similar Smart Monte
Carlo algorithm.[38] This kind of algorithm is particularly designed for systems that need
a long time to reach equilibrium and above all could be trivially parallelized.
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As stated earlier in the introduction Bastian Trepka and the group of Professor Polarz
were able to grow EuO-based nanorods in a solution of benzyl alcohol, while controlling
the aspect ratio of these rods. [2]. It was further realized that these solutions of EuO-rods
gelate as soon as the aspect ratio increases beyond p = 20. A picture of their structure
can be found in figure 6.1.

Figure 6.1: Transmission electron microscopy micrographs of Eu2O3-benzoate particles (a;
scalebar 50nm b; scalebar 50nm c; scalebar nm d; scalebar 100nm)[2].

As stated before we were able to observe comparable network formation in dependence
of the aspect ratio. Even though this behavior is well established [4] these results make us
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optimistic that our model could be appropriately to describe their experimental systems.
Thanks to Jacob Steindl and the group of Clemens Bechinger it was also possible to conduct
a few rheological measurements on the gels grown by Bastian Trepka. The results can be
seen in the figures 6.2 and 6.3. In figure 6.2 we see the storage and stress modulus of the
gel during an maximum amplitude sweep. We see quite well, that we are in the linear
viscoelastic regime, as both are quite constant with respect to γ0(,up to some noise for
small amplitudes). We further see, that apparently both moduli are very close to each
other, i.e. we are dealing with a very weak gel, if the term is even applicable here.

1
0.01 0.1 1 10

G
′ /
G

′′

γ0 [%]

G′

G′′

Figure 6.2: Experimental results of the storage modulus (violet) and stress modulus (green)
of a gelated solution of EuO-based nanrods in dependency of the maximum shear
amplitude γ0 for a constant frequency of ω = 10Rad

s .
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Figure 6.3: Experimental results of the storage modulus (violet) and stress modulus (green) of
a gelated solution of EuO-based nanrods in dependency of the shear frequency ω
for constant maximum shear amplitude of γ0 = 2%

Figure 6.3 shows us the frequency-sweep for the two moduli. We do see an approximately
linear growth of both moduli with frequency. There are two points were the moduli curves
intersect. The loss tangent does not deviate far from 1. While we simulated a few systems
that have a loss tangent of approximately 1 over a large spectrum of parameters, we have
to say that we did not observe this kind of linear behavior of the moduli in any of our
systems.
I appears the model with the parameters we tried out is unfit to describe this particular
systems’ rheological properties. Retrospectively this result does not come unexpected.
Knowing close to nothing about the experimental system except the aspect ratio of the
rods it would have been very unlikely to get all of the important parameters right even if
the model were suitable to describe the experiment. Since we did not vary the interaction
strength of the rods in any of our simulations, there are still plenty of possibilities for the
model to work in this particular case.
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At the end of chapter 5 we already explained how long simulation times limited our capa-
bility to produce a lot of statistics for our model. We also made a few suggestions how the
performance of the program might be.
The task for anyone diving deeper into this problem would be to implement these, and
possibly more, improvements to a code and after that recreate the simulations discussed
in this work in greater number to obtain sufficient statistics. The tools to analyze and
compare these results are ready at hand and free to use. Since we showed that gelated
rod networks can be obtained our method, we are sure that this would be a worthwhile
path to go down. As stated in chapter 6 one could extend these parameter studies to
different interaction strengths and forces. We would even further suggest to also increase
the parameter density for the parameters we already examined.
During the course of this work we did stumble across many ideas one could look at in the
future, which were not carried out so far. We would like to mention just of few of them
here as further suggestions for future research.
We already mentioned the cuboid-like systems of spherocylinders depicted in figure 5.9 and
discussed a little in section 5.2. These interesting formations are formed in comparably
low numbers in the lower density systems with aspect ratio p = 10 and rarely in systems
with p = 20. We could imaging that more simulations are made to see how often these
cuboids actually appear and how exactly this is related to the aspect ratio and the volume
fraction. Maybe some external forces or different potential could be implemented to favor
the growth of cuboids.
If it would proof difficult or impossible to fabricate these cuboids in higher densities com-
pared to more randomly oriented clusters, one could test whether they could be separated
from the other clusters. As there effective volume per spherocylinders included in in there
formation is likely to be smaller than in other random clusters, it could for example be
possible to separate them from the other particles by forcing them through some kind of
mesh-geometry with a driving force.
As there existence in general is already shown by our simulations, one could also move
straight on to simulating these formations in greater number and analyze their properties
as colloids (mean square displacement,distribution functions, ordering phenomena,...).
A further idea that occurred during the course of this work was to use the resulting networks
of spherocylinders as membranes and analyze the properties of spheres moving through
these networks.
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7 Outlook

Finally it would of course be very tempting to move on from Brownian dynamics to more
realistic models, including hydrodynamic effects. This could be obtained by conducting
molecular dynamics simulating of spherocylinders surrounded by much smaller spherical
particles, i.e. actually simulating the surrounding fluid rather than approximating it via
the Langevin-equation. While this of course blows up the number of particles that need
to be simulated a system like this would be a little easier to parallelize compared to the
pure spherocylinder systems. The reason for this is that the lion’s share of computation
time would be needed to calculate the movement of the fluid particles. Since these can be
assume to be spherical, one could use the well known and very effective standard methods
in order to speed up most of the calculations.
All in all there are many ideas to be followed, tools and a program, that with small adap-
tations, can be used to explore any of them. Based on our results we are generally very
optimistic that there are plenty of interesting results and phenomena to be found in future
research related to this work.
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8 Kurze Zusammenfassung auf Deutsch

(Short summary in German)

Die hier vorliegende Arbeit befasste sich mit Computersimulationen von Kolloidsystemen.
Genauer wurden Systeme bestehend aus klebenden Kugeln bzw. klebenden Stäbchen mit
einem Brownsche Dynamik Algorithmus simuliert und dahingehend untersucht, ob sich
in ihnen poröse, perkolierende Netzwerke mit den rehologischen Eigenschaften von Ge-
len bilden. Ursprüngliches Ziel der Arbeit war mit Hilfe eines Programms, das in großen
Teilen von Ullrich Siems [1] geschrieben wurde, die experimentellen Ergebnisse von Bastian
Trepka zu reproduzieren. Bastian Trepka züchtet EuO-basierte Nanostäbchen, die, sobald
ihr Aspekteverhältnis einen Wert von etwa 20 überschreitet, ein Gel mit ihrem Lösungsmit-
tel bilden.[2]
Diese Arbeit enthält zunächst eine kurze Heranführung an die physikalischen und nu-
merischen Grundlagen, die nötig sind um die benutzten Simulationsmethoden sowie die
Interpretation der Resultate zu verstehen. Es folgt ein Überblick über alle Parameter,
mit denen wir Simulationen durchgeführt haben, um größtmögliche Reproduzierbarkeit zu
gewährleisten. Im Anschluss daran werden unsere Ergebnisse detailliert vorgestellt. Erst
werden die Simulationen zu klebenden Kugeln evaluiert. Mit diesen versuchten wir, die
Ergebnisse von Santos, Campanella und Carignano [3] zu reproduzieren, um nachzuweisen,
dass unsere Software und unsere Methoden einwandfrei funktionieren. Es folgen die Ergeb-
nisse der Simulationen von klebenden Stäbchen inklusive der Analyse der Rheologie und
Topologie der entstandenen Systeme. In Kapitel 6 werden die letzteren Ergebnisse mit
den experimentellen Daten verglichen, die von Jabcob Steindl zu Bastian Trepkas Gelen
gesammelt wurden. Abschließend wird ein Überblick über Vorschläge und Ideen gegeben,
wie ausgehend von den Ergebnissen dieser Arbeit in Zukunft weitere Forschung betrieben
werden kann.
Obwohl erste Vergleiche mit den experimentellen Daten nur wenige Hinweise darauf geben,
dass das von uns genutzte Model dazu in der Lage ist, die von Bastian Trepka hergestell-
ten Gele zu beschreiben - was das ursprüngliche Ziel dieser Arbeit war - halten wir diese
Arbeit dennoch insgesamt für einen Erfolg und denken, dass unsere Ergebnisse äußerst
vielversprechend sind.
Es war uns möglich das Paper von Santos, Campanella und Carignano [3] so vollständig zu
reproduzieren, wie wir dies anfangs geplant hatten. Gleichzeitig konnten wir ihre Ergeb-
nisse für Kugeln auf deutlich kompliziertere Systeme bestehend aus klebenden Stäbchen
erweitern.
Weiter konnten wir einen eindeutigen Zusammenhang zwischen der Volumendichte dieser
Stäbchen und ihrem Aspekteverhältnis zu ihrer Eigenschaft, perkolierende, poröse Net-
zwerke zu bilden feststellen. Obwohl dieses Ergebnis wenig überraschend und eigentlich
wohlbekannt ist, wurde es dem Stand unserer Kenntniss nach bisher nicht für Stäbchen mit
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Kihara-Lennard-Jones Wechselwirkung beobachtet.[4] Unsere Analyse der topologischen
Struktur dieser Netzwerke zeigt interessante Ergebnisse und könnte nützliche Einblicke in
vergleichbare Systeme geben. Gleichzeitig könnte die Methode genutzt werden, um Bilder
von echten Gelen untereinander oder mit den Resultaten von Simulationen automatische
zu vergleichen.
Zuletzt zeigt die rheologische Analyse, dass wir in der Tat in der Lage waren, einige Sys-
teme von klebenden Stäbchen zu simulieren, welche die charakteristischen Eigenschaften
von Gelen aufweisen.
Damit wurde der Nachweis erbracht, dass unsere Werkzeuge und Methoden funktionieren
und benutzt werden können, um derartige Gelstrukturen auf Basis von Stäbchen zu gener-
ieren. Ausgehend von diesen Resultaten stehen viele Türen für spannende zukünftige
Projekte weit offen.
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AAppendix

A.1 Shortest distance between spherocylinders
In order to calculate the forces between spherocylinders interacting with a Kihara-potential
we need to know the shortest distance between the surface of two spherocylinders. To cal-
culate this distance the program of Ullrich Siems used the algorithm described in [39],
which will be explained below.
Due to the fact that the shortest line between to objects is always perpendicular on their
surfaces and that the shortest distance between every point of the line segment a sphero-
cylinder to its surface is σ

2
it is sufficient to calculate the distance between the line segments

of spherocylinders and subtract σ from the result to get the actual distance between the
surfaces.
First of all we parametrize the line segments of two spherocylinders as

l1(λ1) = r1 + λ1e1 λ1 ∈ [−l/2, l/2]

l2(λ2) = r2 + λ2e2 λ2 ∈ [−l/2, l/2] ,

where r1/2 are the center of mass positions of the spherocylinders and e1/2 are their orien-
tations
We will first assume that the spherocylinders are not parallel to each other, i.e. e1 · e2 ̸= 1.
In this case the function d(l1(λ1), l2(λ2))

2 is a convex function, whose unique minimum can
be found by solving the equation

∇d(l1(λ1), l2(λ2))
2 = 0 (33)

⇔
λ0
1 =

r12·e1−e1·e2r12·e2
1−(e1·e2)2

λ0
2 =

−r12·e2+e1·e2r12·e2
1−(e1·e2)2

, (34)

where r12 = r1 − r2 = −r21. If (λ1, λ2) is in (−l/2, l/2) × (−l/2, l/2) we can use these
two parameters to calculate the shortest distance. Otherwise (λ1, λ2) has to be on the
boundary of (−l/2, l/2)× (−l/2, l/2), i.e λ1 = ±l/2 or λ2 = ±l/2.
To figure out which λi obeys this condition we have a closer look, at the equation
d(l1(λ1), l2(λ2)

2 = c2 and realize that, if we go to coordinates u = λ1 +λ2 and v = λ1 −λ2,
this is an elliptic equation for ellipses with half axis parallel to λ1 = λ2 and λ1 = −λ2. The
center of these ellipses can be determined by searching the minimum of d(l1(λ1), l2(λ2)

2,
which means we already calculated the solution. An illustration of such an ellipse can be
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found in A.1.
If we continuously increase c2 these ellipses will touch the boundary of
(−l/2, l/2)× (−l/2, l/2), which is a square in the λ1, λ2-plane, at some point. It turns out
that the c at which this first touching happens is the actual shortest distance between our
line segments. From the intersection point we can read of λ1 and λ2 corresponding to it.
It makes life a lot easier that the side of the square, that is the boundary of
(−l/2, l/2)× (−l/2, l/2), which is touched first by a given ellipse can be solely determined
by looking at the center of the ellipse, i.e. (λ0

1, λ
0
2). Figure A.2 shows the λ1, λ2-plane

divided into four areas and (−l/2, l/2) × (−l/2, l/2). If the center of one ellipse like this
is within one of these areas, the point where it first touches (−l/2, l/2) × (−l/2, l/2) will
be an element of the side of the square touching the respective area. If the center is for
example within area 1, we can conclude that λ1 = l/2, if it were within area 2 we could
tell that λ2 = l/2, etc.
Now that one of the parameter is chosen to be ±l/2 the remaining one can simply be
found by minimizing d2 with respect to the remaining parameter. The result is necessarily
in [−l/2, l/2].
With the resulting parameters we can determine the shortest distance, as well as the vec-
tor along this shortest distance, which is uses as attack point for forces depending on the
shortest distance.

Figure A.1: Illustration of an ellipse with d(l1(λ1), l2(λ2)
2 = c2 and the area covered by

(−l/2, l/2)× (−l/2, l/2) [39]
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A.2 Radius of gyration

Figure A.2: Division of λ1, λ2-plane into four areas to determine, which side of the square
(−l/2, l/2)× (−l/2, l/2) will be touch first by growing ellipses.[39]

If our spherocylinders are now parallel to each other, we have to differentiate between two
cases. The first case covers the scenario, in which it is possible to cause an overlap of the two
spherocylinders by moving them along a direction perpendicular to their orientation. In
this case λ1 and λ2 can be calculated as the positive/negative projection of the orientation
e1 = e2 onto r12 over 2:

λ1/2 =
±r12 · e1/2

2
.

This result can be inserted into d(l1(λ1), l2(λ2) to get the shortest distance. This procedure
correspond to choosing the centers of the parts of the spherocylinders that would overlap
and calculating the shortest distance by connecting these centers. This connection vector
is also used as attacking point for the forces calculated with the shortest distance.
If on the other hand it is not possible to produce such an overlap between the two sphero-
cylinders the shortest distance of the line segments is giving by the distance between the
nearest endpoints. One can simple compare all three possibilities of pairing endpoints and
chose the shortest distance in this case.

A.2 Radius of gyration

As a further indicator for percolating networks we wanted to use the so called radius of
gyrationRg. It is a measure for the compactness of a system, i.e. the smaller Rg the
compacter the system and the bigger Rg the further spread throughout the box are the
colloids. The square of the radius of gyration is defined as the mean square distance of
the whole system to its center of mass. Due to lack of statistics the results concerning the
radius of gyration were completely inconclusive. However since it might be of interest in
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further analysis of networks of spherocylinders we wanted to include the necessary basics
to apply it on such systems here.
For a collection of N point particles it is given by

R2
g =

1

N

N∑
i=1

|r⃗i − r⃗s|2, (35)

where r⃗i is the position of the ith particle and r⃗s is the center of mass of the system. If
the particles have volume, i.e. the mass of the system is given by a mass density ρ(r⃗) then
this translates to

R2
g =

1

M

∫
R

ρ(r⃗)|r⃗i − r⃗s|2dr⃗. (36)

For identical point symmetric particles, of homogeneous mass density the radius of gyration
can be written in terms of the radius of gyration Rg,p of a single particle i with respect
to its own center of mass ris and the mean square distance of the centers of mass of the
particles to the center of mass of the system:

R2
g = Rg,p +

1

N

N∑
i=1

|r⃗is − r⃗s|2. (37)

To apply these to the systems we simulated only Rp
g needs to be known. For a sphere of

radius r it is given by

R2
g,sphere =

3

5
r2. (38)

For spherocylinders with cylinder hight l and radius r the radius of gyration Rg,sc can be
derived from the radius of gyration the cylinder and the two half spheres. The result is

R2
g,sc =

1

l + 4
3
r

[(
r2

4
+

l2

12

)
l +

4

3
r

((
3

5
− 9

64

)
r2 +

(
l

2
+

3

8
r

)2
)]

. (39)

A short proof of equation (37) and the derivation of (39) can be found in the appendix in
section A.2.1 and A.2.2.

A.2.1 Radius of gyration for homogeneous identical, point symmetric particles

In this section we proof equation (37) for the radius of gyration of a system of N identical,
homogeneous, point symmetric particles, who with respect to their own center of mass
have a radius of gyration of Rp

g.
To do so we first introduce the variable Ri

g(r⃗0), whose square is defined as(
Ri

g(r⃗0)
)2

=
1

Vi

∫
Vi

|r⃗ − r⃗is|2dr⃗, (40)
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where Vi is the volume of the ith particle. Ri
g(r⃗0) can be interpreted as radius of gyration

of the ith particle with respect to r⃗0 rather than with respect to the center of mass of the
system.
We can now show that (

Ri
g(rs)

)2
=
(
Ri

g(ris)
)2

+ |r⃗s − r⃗0|2, (41)

where r⃗is is the center of mass of the ith particle. Without loss of generality we chose a
coordinate system, in which ris is zero. We can then calculate

ViR
i
g(r⃗s) =

∫
Vi

|r⃗ − r⃗s|2dr⃗ =
∫
Vi

r⃗2dr⃗ +

∫
Vi

r⃗2sdr⃗ +

∫
Vi

r⃗ · r⃗sdr⃗ (42)

The first term here is ViR
i
g(r⃗is), while the second equals Vi|rs − ris|2. The last one is zero,

because Vi is point symmetric, hence proofing equation (41).
With this we can now verify equation (37).

R2
g =

1

V

∫
V

|r⃗ − rs|2dr⃗ =
1

V

N∑
i=1

∫
Vi

|r⃗ − rs|2dr⃗ =
1

N

N∑
i=1

(
Ri

g(r⃗s)
)2

= (43)

1

V

N∑
i=1

Vi

(
Ri

g(r⃗is)
)2

+ |r⃗is − r⃗s|2 =
(
Rp

g

)2
+

1

N

N∑
i=1

|r⃗is − r⃗s|2. (44)

A.2.2 Radius of gyration of a spherocylinder

The radius of gyration Rg,sc of a spherocylinder with radius r and cylinder height l is given
in equation (39). To derive it we assume that the spherocylinder’s center of mass is situated
at the origin of our coordinate system. Then the cylinder part of the spherocylinder also
has its center of mass at the origin, while the centers of mass of the two half-spheres have
a distance to the origin of d = l/2 + 3

8
r2.

The radius of gyration can now be calculated via

R2
g,sc =

1

Vsc

(
R2

g,cVc + 2R2
g,hs(d)Vhs

)
, (45)

where Rc is the radius of gyration of the cylinder, that makes up the spherocylinder and
Rg,hs(d) is the mean square distance of the two half-sphere from the center of mass of the
spherocylinder. With equation (41) we can express this mean square distance in terms of
the radius of gyration of half-spheres Rg,hs and the distance d:

R2
g,hs(d) = R2

g,hs + d2. (46)

The radius of gyration of a half-sphere is R2
g,hs =

(
3
5
− 9

64

)
r2, while the radius of gyration

of the cylinder is R2
g,c =

r2

4
+ l2

2 . Inserting all this back into equation (45) finally gives us,
after some simple algebra, equation (39).
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